Skip to main content
Log in

Defective zirconium/titanium bimetallic metal–organic framework as a highly selective and sensitive electrochemical aptasensor for deoxynivalenol determination in foodstuffs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical aptsensor for deoxynivalenol determination was successfully designed and constructed based on a defective bimetallic organic framework (denoted as ZrTi-MOF). The high porosity, large specific surface area, several structural defects, mixed metal clusters, and rich functionality of ZrTi-MOF markedly enhanced its electrochemical activity and facilitated the aptamer immobilization. As a result, the ZrTi-MOF–based aptasensor shows high sensitivity to detect deoxynivalenol via specific recognition between aptamer and deoxynivalenol, as well as the formation of aptamer-deoxynivalenol complex. On this basis, the developed ZrTi-MOF–based impedimetric aptasensor showed a low detection limit of 0.24 fg mL−1 for deoxynivalenol determination in the deoxynivalenol concentration range 1 fg mL−1– 1 ng mL−1 under optimized conditions, which also exhibited satisfactory selectivity, stability, reproducibility, and regenerability. Furthermore, determination of deoxynivalenol was achieved in bread and wheat flour samples via the developed ZrTi-MOF–based deoxynivalenol aptasensor. The result from this study showed that the ZrTi-MOF–based electrochemical aptasensor could become a promising strategy for detecting deoxynivalenol in foodstuffs in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Gerez JR, Desto SS, Bracarense APFRL (2017) Deoxynivalenol induces toxic effects in the ovaries of pigs: an ex vivo approach. Theriogenology 90:94–100. https://doi.org/10.1016/j.theriogenology.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  2. Setting maximum levels for certain contaminants in foodstuff, in: C.R. (EC) (Ed.) 1881, European Commission, Official Journal of the European Union L, 2006, pp. 5–24. https://www.legislation.gov.uk/eur/2006/1881

  3. Authority E F S (2004) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to deoxynivalenol (DON) as undesirable substance in animal feed. EFSA J 2(6):73. https://doi.org/10.2903/j.efsa.2004.73

    Article  Google Scholar 

  4. Guidance for Industry and FDA, in: Advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed, U.S. Food and Drug Administration (2010). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human

  5. Hickert S, Gerding J, Ncube E, Hübner F, Flett B, Cramer B, Humpf H-U (2015) A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotoxin Res 31(2):109–115. https://doi.org/10.1007/s12550-015-0221-y

    Article  CAS  PubMed  Google Scholar 

  6. Meaney MS, McGuffin VL (2008) Luminescence-based methods for sensing and detection of explosives. Anal Bioanal Chem 391(7):2557–2576. https://doi.org/10.1007/s00216-008-2194-6

    Article  CAS  PubMed  Google Scholar 

  7. Stroka J, Anklam E (2000) Development of a simplified densitometer for the determination of aflatoxins by thin-layer chromatography. J Chromatogr A 904(2):263–268. https://doi.org/10.1016/S0021-9673(00)00947-X

    Article  CAS  PubMed  Google Scholar 

  8. Wu H, Fan D, Cheng J (2022) Development and validation of an UHPLC–Ms/Ms method for the determination of 32 pyrrolizidine alkaloids in Chinese wild honey. J AOAC INT 106(1):56–64. https://doi.org/10.1093/jaoacint/qsac094

    Article  PubMed  Google Scholar 

  9. Liu J-M, Hu Y, Yang Y-K, Liu H, Fang G-Z, Lu X, Wang S (2018) Emerging functional nanomaterials for the detection of food contaminants. Trends Food Sci Technol 71:94–106. https://doi.org/10.1016/j.tifs.2017.11.005

    Article  CAS  Google Scholar 

  10. Deng Z, Li M, Hu Y, He Y, Tao B, Yuan Z, Wang R, Chen M, Luo Z, Cai K (2021) Injectable biomimetic hydrogels encapsulating gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chem Eng J 420:129668. https://doi.org/10.1016/j.cej.2021.129668

    Article  CAS  Google Scholar 

  11. Dong J, Wen L, Yang H, Zhao J, He C, Hu Z, Peng L, Hou C, Huo D (2022) Catalytic hairpin assembly-driven ratiometric dual-signal electrochemical biosensor for ultrasensitive detection of microRNA based on the ratios of Fe-MOFs and MB-GA-UiO-66-NH2. Anal Chem 94(15):5846–5855. https://doi.org/10.1021/acs.analchem.1c05293

    Article  CAS  PubMed  Google Scholar 

  12. Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y (2014) Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens Bioelectron 62:163–169. https://doi.org/10.1016/j.bios.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Cheng H, Zhao Y, Wang Y, Li F (2022) Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosens Bioelectron 199:113906. https://doi.org/10.1016/j.bios.2021.113906

    Article  CAS  PubMed  Google Scholar 

  14. Peng Y, Geng L, Liu X, Liu M, Wu H, Li J (2019) A label-free small molecular hydrogel-based electrochemical immunosensor for ultrasensitive detection of deoxynivalenol. Anal Methods-UK 11(47):5948–5952. https://doi.org/10.1039/C9AY02018G

    Article  CAS  Google Scholar 

  15. Wei K, Sun J, Gao Q, Yang X, Ye Y, Ji J, Sun X (2021) 3D “honeycomb” cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins. Bioelectrochemistry 139:107743. https://doi.org/10.1016/j.bioelechem.2021.107743

    Article  CAS  PubMed  Google Scholar 

  16. Hong F, Chen R, Lu P, Li L, Xiao R, Chen Y, Yang H (2022) A universal, portable, and ultra-sensitive pipet immunoassay platform for deoxynivalenol detection based on dopamine self-polymerization-mediated bioconjugation and signal amplification. J Hazard Mater 436:129257. https://doi.org/10.1016/j.jhazmat.2022.129257

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian J-Y, Zhang S, Wang M, He L, Du M (2021) Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 118:569–588. https://doi.org/10.1016/j.tifs.2021.10.024

    Article  CAS  Google Scholar 

  18. Song Y, Xu M, Li Z, He L, Hu M, He L, Zhang Z, Du M (2020) A bimetallic CoNi-based metal−organic framework as efficient platform for label-free impedimetric sensing toward hazardous substances. Sensor Actuat B-Chem 311:127927. https://doi.org/10.1016/j.snb.2020.127927

    Article  CAS  Google Scholar 

  19. Zhou H-CJ, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43(16):5415–5418. https://doi.org/10.1039/C4CS90059F

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Rong F, Guo C, Duan F, He L, Wang M, Zhang Z, Kang M, Du M (2021) Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev 439:213948. https://doi.org/10.1016/j.ccr.2021.213948

    Article  CAS  Google Scholar 

  21. Wen X, Huang Q, Nie D, Zhao X, Cao H, Wu W, Han Z (2021) A multifunctional N-doped Cu–MOFs (N–Cu–MOF) nanomaterial-driven electrochemical aptasensor for sensitive detection of deoxynivalenol. Molecules 26(8):2243. https://doi.org/10.3390/molecules26082243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu M, Zhu L, Li Z, Guo C, Wang M, Wang C, Du M (2021) CoNi bimetallic metal–organic framework as an efficient biosensing platform for miRNA 126 detection. Appl Surf Sci 542:148586. https://doi.org/10.1016/j.apsusc.2020.148586

    Article  CAS  Google Scholar 

  23. Rezki M, Septiani NLW, Iqbal M, Adhika DR, Wenten IG, Yuliarto B (2021) Review—recent advance in multi-metallic metal organic frameworks (mm-mof) and their derivatives for electrochemical biosensor application. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ac3713

    Article  Google Scholar 

  24. Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z (2017) Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for bifunctional electrochemical and spr aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces 9(47):41188–41199. https://doi.org/10.1021/acsami.7b14952

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, He B, Xie L, Li L, Yang J, Liu R, Wei M, Jin H, Ren W (2021) Exonuclease III-assisted triple-amplified electrochemical aptasensor based on PtPd NPs/PEI-rGO for deoxynivalenol detection. Sensor Actuat B-Chem 349:130767. https://doi.org/10.1016/j.snb.2021.130767

    Article  CAS  Google Scholar 

  26. Ru J, Wang X, Cui X, Wang F, Ji H, Du X, Lu X (2021) GaOOH-modified metal-organic frameworks UiO-66-NH2: selective and sensitive sensing four heavy-metal ions in real wastewater by electrochemical method. Talanta 234:122679. https://doi.org/10.1016/j.talanta.2021.122679

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Zhang X, Hu X, Shi Y, Liang N, Huang X, Wang X, Shen T, Zou X, Shi J (2022) Simple design concept for dual-channel detection of ochratoxin a based on bifunctional metal–organic framework. ACS Appl Mater Interfaces 14(4):5615–5623. https://doi.org/10.1021/acsami.1c22809

    Article  CAS  PubMed  Google Scholar 

  28. Song H, Sun Z, Xu Y, Han Y, Xu J, Wu J, Sun T, Meng H, Zhang X (2019) Fabrication of NH2-MIL-125(Ti) incorporated TiO2 nanotube arrays composite anodes for highly efficient PEC water splitting. Sep Purif Technol 228:115764. https://doi.org/10.1016/j.seppur.2019.115764

    Article  CAS  Google Scholar 

  29. Xu Z, Zhao G, Ullah L, Wang M, Wang A, Zhang Y, Zhang S (2018) Acidic ionic liquid based UiO-67 type MOFs: a stable and efficient heterogeneous catalyst for esterification. RSC Adv 8(18):10009–10016. https://doi.org/10.1039/C8RA01119B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang M, Yang L, Hu B, Liu Y, Song Y, He L, Zhang Z, Fang S (2018) A novel electrochemical sensor based on Cu3P@NH2-MIL-125(Ti) nanocomposite for efficient electrocatalytic oxidation and sensitive detection of hydrazine. Appl Surf Sci 445:123–132. https://doi.org/10.1016/j.apsusc.2018.03.144

    Article  CAS  Google Scholar 

  31. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification 1 International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry). Biosens Bioelectron 16(1):121–131. https://doi.org/10.1016/S0956-5663(01)00115-4

    Article  PubMed  Google Scholar 

  32. Kim S-N, Kim J, Kim H-Y, Cho H-Y, Ahn W-S (2013) Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal Today 204:85–93. https://doi.org/10.1016/j.cattod.2012.08.014

    Article  CAS  Google Scholar 

  33. Mahapatro A, Johnson DM, Patel DN, Feldman MD, Ayon AA, Agrawal CM (2006) Surface modification of functional self-assembled monolayers on 316l stainless steel via lipase catalysis. Langmuir 22(3):901–905. https://doi.org/10.1021/la052817h

    Article  CAS  PubMed  Google Scholar 

  34. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55(21):6239–6247. https://doi.org/10.1016/j.electacta.2009.09.055

    Article  CAS  Google Scholar 

  35. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2(9):1825–1832. https://doi.org/10.1021/nn800244k

    Article  CAS  PubMed  Google Scholar 

  36. Yuan K, Ni Y, Zhang L (2012) Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2. J Alloy Compd 532:10–15. https://doi.org/10.1016/j.jallcom.2012.04.007

    Article  CAS  Google Scholar 

  37. Yang H, Liu Y, Luo S, Zhao Z, Wang X, Luo Y, Wang Z, Jin J, Ma J (2017) Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal 7(8):5557–5567. https://doi.org/10.1021/acscatal.7b00007

    Article  CAS  Google Scholar 

  38. Sarabaegi M, Roushani M, Hosseini H, Hoseini SJ, Bahrami M (2020) Facile synthesis of a covalent organic framework (COF) based on the reaction of melamine and trimesic acid incorporated electrospun nanofiber and its application as an electrochemical tyrosinamide aptasensor. New J Chem 44(35):14922–14927. https://doi.org/10.1039/D0NJ02837A

    Article  CAS  Google Scholar 

  39. Wang M, Hu M, Liu J, Guo C, Peng D, Jia Q, He L, Zhang Z, Du M (2019) Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens Bioelectron 132:8–16. https://doi.org/10.1016/j.bios.2019.02.040

    Article  CAS  PubMed  Google Scholar 

  40. Zhang K, Lu L, Liu Z, Cao X, Lv L, Xia J, Wang Z (2022) Metal-organic frameworks-derived bimetallic oxide composite nanozyme fiber membrane and the application to colorimetric detection of phenol. Colloids Surf Physicochem Eng Aspects 650:129662. https://doi.org/10.1016/j.colsurfa.2022.129662

    Article  CAS  Google Scholar 

  41. Zhang Z-H, Duan F-H, Tian J-Y, He J-Y, Yang L-Y, Zhao H, Zhang S, Liu C-S, He L-H, Chen M, Chen D-M, Du M (2017) Aptamer-embedded zirconium-based metal–organic framework composites prepared by de novo bio-inspired approach with enhanced biosensing for detecting trace analytes. ACS Sensors 2(7):982–989. https://doi.org/10.1021/acssensors.7b00236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Henan Provincial Science and Technology Research Project, China (Nos. 212102210203 and 222102310153) and Xinxiang City Science and Technology Research Project, China (No. GG2021002).

Author information

Authors and Affiliations

Authors

Contributions

Mengmeng Kang: Investigation, writing — original draft, writing — review and editing, funding acquisition, data collection and analysis. Shunjiang Huang: Investigation, data collection and analysis. Mengfei Wang: Investigation, data collection and analysis. Olayinka Oderinde: Writing — review and editing. Minghua Wang: Formal analysis, writing — review and editing, funding acquisition. Zhihong Zhang: Investigation, methodology, formal analysis; supervision.

Corresponding authors

Correspondence to Mengmeng Kang, Minghua Wang or Zhihong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4109 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Huang, S., Wang, M. et al. Defective zirconium/titanium bimetallic metal–organic framework as a highly selective and sensitive electrochemical aptasensor for deoxynivalenol determination in foodstuffs. Microchim Acta 190, 358 (2023). https://doi.org/10.1007/s00604-023-05935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05935-4

Keywords

Navigation