Skip to main content
Log in

Construction of chiral capillary electrochromatography microsystems based on Aspergillus sp. CM96

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel chiral capillary electrochromatography (CEC) microsystems were constructed based on Aspergillus sp. CM96. As a newly discovered intrinsic characteristic of the cell, cell chirality occupies an essential position in life evolution. Aspergillus sp. CM96 spore (CM96s) was chosen as a proof of concept to develop chiral capillary columns. Interestingly, various types of amino acid (AA) enantiomers were baseline separated under the optimized conditions. Furthermore, the time-dependent chiral interactions between AAs and CM96s were explored in a wider space. Pectinases generated from Aspergillus sp. CM96 fermentation were immobilized onto graphene oxide–functionalized capillary silica monoliths for separating AA enantiomers. Molecular docking simulations were performed to explore chiral separation mechanisms of pectinase for AA enantiomers. These results indicated that Aspergillus sp. CM96-based CEC microsystems have a significant advantage for chiral separation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Wang Y, Chen JK, Xiong LX, Wang BJ, Xie SM, Zhang JH, Yuan LM (2022) Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal Chem 94:4961–4969

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Sun L, Ding Y, Liu M, Xie L, Liu Y, Shang L, Wu Y, Jiang H, Chi L, Qiu X, Xu W (2021) Water-induced chiral separation on a Au(111) surface. ACS Nano 15:16896–16903

    Article  CAS  PubMed  Google Scholar 

  3. Feng F, Zhang S, Yang L, Li G, Xu W, Qu H, Zhang J, Dhinakaran MK, Xu C, Cheng J, Li H (2022) Highly chiral selective resolution in pillar[6]arenes functionalized microchannel membranes. Anal Chem 94:6065–6070

    Article  CAS  PubMed  Google Scholar 

  4. Fanali C (2019) Enantiomers separation by capillary electrochromatography. TrAC Trends Anal Chem 120:115640

    Article  CAS  Google Scholar 

  5. Hong T, Liu X, Zhou Q, Liu Y, Guo J, Zhou W, Tan S, Cai Z (2022) What the microscale systems “see” in biological assemblies: cells and viruses? Anal Chem 94:59–74

    Article  CAS  PubMed  Google Scholar 

  6. Fan J, Ray P, Lu YW, Kaur G, Schwarz JJ, Wan LQ (2018) Cell chirality regulates intercellular junctions and endothelial permeability. Sci Adv 4:eaat2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Furchtgott L, Huang KC, Shaevitz JW (2012) Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. PNAS 109:E595–E604

    PubMed  PubMed Central  Google Scholar 

  8. Jing G, Zöttl A, Clément É, Lindner A (2020) Chirality-induced bacterial rheotaxis in bulk shear flows. Sci Adv 6:eabb2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H (2022) Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 13:5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sauer F, Haas M, Sydow C, Siegle AF, Lauer CA, Trapp O (2021) From amino acid mixtures to peptides in liquid sulphur dioxide on early earth. Nat Commun 12:7182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muchowska KB, Moran J (2020) Peptide synthesis at the origin of life. Science 370:767–768

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Li X, Masai H, Huang X, Tsuda S, Terao J, Yang J, Guo X (2021) A single-molecule electrical approach for amino acid detection and chirality recognition. Sci Adv 7:eabe4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu S, Ye Q, Wu D, Tao Y, Kong Y (2020) Enantioselective recognition of chiral tryptophan with achiral glycine through the strategy of chirality transfer. Anal Chem 92:11927–11934

    Article  CAS  PubMed  Google Scholar 

  14. Liu H, Shao J, Shi L, Ke W, Zheng F, Zhao Y (2020) Electroactive NPs and D-amino acids oxidase engineered electrochemical chiral sensor for D-alanine detection. Sensor Actuat B-Chem 304:127333

    Article  CAS  Google Scholar 

  15. Wang L, Gao W, Ng S, Pumera M (2021) Chiral protein-covalent organic framework 3D-printed structures as chiral biosensors. Anal Chem 93:5277–5283

    Article  CAS  PubMed  Google Scholar 

  16. Ye Q, Guo L, Wu D, Yang B, Tao Y, Deng L, Kong Y (2019) Covalent functionalization of bovine serum albumin with graphene quantum dots for stereospecific molecular recognition. Anal Chem 91:11864–11871

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Wang Y, Zhang X (2017) Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids. ACS Appl Mater Interfaces 9:20991–20999

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki M, Sujino T, Chiba S, Harada Y, Goto M, Takahashi R, Mita M, Hamase K, Kanai T, Ito M, Waldor MK, Yasui M, Sasabe J (2021) Host-microbe cross-talk governs amino acid chirality to regulate survival and differentiation of B cells. Sci Adv 7:eabd6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao X, Zheng Z, Cai Y, Zhao Y, Zhang Y, Gao Y, Cui Z, Wang X (2020) Accelerated biomethane production from lignocellulosic biomass: pretreated by mixed enzymes secreted by Trichoderma viride and Aspergillus sp. Bioresour Technol 309:123378

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen MK, Kuzyk A (2019) Reconfigurable chiral plasmonics beyond single chiral centers. ACS Nano 13:13615–13619

    Article  CAS  PubMed  Google Scholar 

  22. Ávalos-Ovando O, Besteiro LV, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte MA, Govorov AO (2021) Chiral photomelting of DNA-nanocrystal assemblies utilizing plasmonic photoheating. Nano Lett 21:7298–7308

    Article  PubMed  Google Scholar 

  23. Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H (2022) Chirality transmission in macromolecular domains. Nat Commun 13:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sevim S, Sorrenti A, Vale JP, El-Hachemi Z, Pané S, Flouris AD, Mayor TS, Puigmartí-Luis J (2022) Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows. Nat Commun 13:1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerstner E (2010) Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nature Phys 6:836

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  27. Hong T, Chen X, Xu Y, Cui X, Bai R, Jin C, Li R, Ji Y (2016) Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J Chromatogr A 1456:249–256

    Article  CAS  PubMed  Google Scholar 

  28. Shi H, Quint DA, Grason GM, Gopinathan A, Huang KC (2020) Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation. Nat Commun 11:1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Zang SQ, Chen X (2020) Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev 49:2481–2503

    Article  CAS  PubMed  Google Scholar 

  30. Tang W, Lu Y, Row KH, Baeck SH, Zhang Y, Sun G (2022) Novel bovine serum album and β-cyclodextrin-based mixed chiral stationary phase for the enantioseparation in capillary electrochromatography. Microchem J 181:107763

    Article  CAS  Google Scholar 

  31. Sun G, Tang W, Lu Y, Row KH (2022) Enantioseparation by simultaneous biphasic recognition using mobile phase additive and chiral stationary phase in capillary electrochromatography. J Chromatogr A 1666:462856

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M, Chen J, Xu G, Yu T, Du Y (2023) A chiral metal-organic framework synthesized by the mixture of chiral and non-chiral organic ligands for enantioseparation of drugs by open-tubular capillary electrochromatography. J Chromatogr A 1699:464029

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Chen C, Li X, Du Y, Zhao S, Feng Z (2020) Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography: application to enantioseparation of β-blockers. Microchimica Acta 187:170

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Xu G, Chen J, Yu T, Miao P, Du Y (2023) One-step synthesis of chiral molecularly imprinted polymer TiO2 nanoparticles for enantioseparation of phenylalanine in coated capillary electrochromatography. Microchimica Acta 190:279

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

For financial support of this work, we acknowledge the National Natural Science Foundation of China (81803495); Natural Science Foundation of Hunan Province (2019JJ50749).

Author information

Authors and Affiliations

Authors

Contributions

Tingting Hong and Zhiqiang Cai conceived the project; Tingting Hong and Xing Liu designed and performed the experiments. All the authors discussed the results. Tingting Hong, Yibing Ji, and Songwen Tan wrote the original draft. All authors contributed to finalizing the manuscript.

Corresponding authors

Correspondence to Yibing Ji, Songwen Tan or Zhiqiang Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 5254 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, T., Liu, X., Ji, Y. et al. Construction of chiral capillary electrochromatography microsystems based on Aspergillus sp. CM96. Microchim Acta 190, 357 (2023). https://doi.org/10.1007/s00604-023-05926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05926-5

Keywords

Navigation