Skip to main content
Log in

Slice-layer COFs-aerogel: a regenerative dispersive solid-phase extraction adsorbent for determination of ultra-trace quinolone antibiotics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel type of three-dimensional network structure, covalent organic frameworks (COFs) aerogel, was fabricated and applied to dispersive solid-phase extraction (dSPE) of quinolone antibiotics (QAs). Density functional theory (DFT) was applied to investigate the possible interaction mechanism and results confirmed that the strong adsorption affinity is attributed to the intralayer hydrogen bonds and π-π interaction. Furthermore, a sensitive analytical method based on COFs-aerogel for determining quinolone antibiotics residues in water and honey samples was developed and HPLC-MS/MS was used for sample detection and quantification. Under the optimal conditions, COFs-aerogel exhibited a wide linearity (0.1–500 ng∙L−1), low limits of detection (0.02–0.06 ng∙L−1), and good precision (RSD ˂ 10%) for selected QAs. A preliminary practical application of the developed method was proved by the efficient detection of quinolone antibiotics in water and food samples with good recoveries (68.2–104% and 64.0–100% for water and honey samples, respectively). Combining the experimental data with theoretical calculation, results illustrated that COFs-aerogel holds a great potential to capture contaminants and address environmental and food safety issues.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zainab SM, Junaid M, Xu N, Malik RN (2020) Antibiotics and antibiotic resistant genes (ARGs) in ground water: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res 187:116455. https://doi.org/10.1002/chem.201706056

    Article  CAS  PubMed  Google Scholar 

  2. Congilosi JL, Aga DS (2021) Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J Hazard Mater 405:123634. https://doi.org/10.1016/j.jhazmat.2020.123634

    Article  CAS  PubMed  Google Scholar 

  3. Han Y, Ma YY, Yao SC, Zhang JP, Hu CQ (2021) In vivo and in silico evaluations of survival and cardiac developmental toxicity of quinolone antibiotics in zebrafish embryos (Danio rerio). Environ Pollut 277:116779. https://doi.org/10.1016/j.envpol.2021.116779

    Article  CAS  PubMed  Google Scholar 

  4. Wang JX, Lu XN, Jing QL, Zhang BW, Ye JH, Zhang HC, Xiao ZH, Zhang JE (2023) Spatiotemporal characterization of heavy metal and antibiotics in the Pearl River Basin and pollutants removal assessment using invasive species-derived biochars. J Hazard Mater 454:131409. https://doi.org/10.1016/j.jhazmat.2023.131409

    Article  CAS  PubMed  Google Scholar 

  5. Hong JW, Liu XM, Yang XY, Wang YS, Zhao LS (2022) Ionic liquid-based dispersive liquid-liquid microextraction followed by magnetic solid-phase extraction for determination of quinolones. Microchim Acta 189:8. https://doi.org/10.1007/s00604-021-05077-5

    Article  CAS  Google Scholar 

  6. Xu GJ, Dong XF, Hou LF, Wang XL, Liu L, Ma H, Zhao RS (2020) Room-temperature synthesis of flower-shaped covalent organic frameworks for solid-phase extraction of quinolone antibiotics. Anal Chim Acta 1126:82–90. https://doi.org/10.1016/j.aca.2020.05.071

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan MV, Henderson A, Hand RA, Turner NW (2022) A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk. Anal Bioanal Chem 414:3687–3696. https://doi.org/10.1007/s00216-022-04012-8

    Article  CAS  PubMed  Google Scholar 

  8. Kojok HEI, Darra NEI, Khalil M, Capo A, Pennacchio A, Staiano M, Camarca A, D’Auria S, Varriale A (2020) Fluorescence polarization assay to detect the presence of traces of ciprofloxacin. Sci Rep 10:4550. https://doi.org/10.1038/s41598-020-61395-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng HP, Chen JH, Zhang CJ, Huang XA, Sun YM, Xu ZL, Lei HT (2016) Broad-specificity chemiluminescence enzyme immunoassay for (fluoro)quinolones: hapten design and molecular modeling study of antibody recognition. Anal Chem 88:3909–3916. https://doi.org/10.1021/acs.analchem.6b00082

    Article  CAS  PubMed  Google Scholar 

  10. Pochivalov A, Timofeeva I, Vakh C, Bulatov A (2017) Switchable hydrophilicity solvent membrane-based microextraction: HPLC-FLD determination of fluoroquinolones in shrimps. Anal Chim Acta 976:35–44. https://doi.org/10.1016/j.aca.2017.04.054

    Article  CAS  PubMed  Google Scholar 

  11. Locatelli M, Ciavarella MT, Paolino D, Celia C, Fiscarelli E, Ricciotti G, Pompilio A, Bonaventura GD, Grande Q, Zengin G, Marzio LD (2015) Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J Chromatogr A 1419:58–66. https://doi.org/10.1016/j.chroma.2015.09.075

    Article  CAS  PubMed  Google Scholar 

  12. Wang R, Chen DW, Zhao YF, Wu YN, Qi KM (2021) Selective extraction and enhanced-sensitivity detection of fluoroquinolones in swine body fluids by liquid chromatography-high resolution mass spectrometry: application in long-term monitoring in livestock. Food Chem 341:128269. https://doi.org/10.1016/j.foodchem.2020.128269

    Article  CAS  PubMed  Google Scholar 

  13. Zhang ZC, Cheng HF (2017) Recent development in sample preparation and analytical techniques for determination of quinolone residues in food products. Crit Rev Anal Chem 47:223–250. https://doi.org/10.1080/10408347.2016.1266924

    Article  CAS  PubMed  Google Scholar 

  14. Büyüktiryaki S, Keçili R, Hussain CM (2020) Functionalized nanomaterials in dispersive solid phase extraction: advances & prospects. TrAC-Trend Anal Chem 127:115893. https://doi.org/10.1016/j.trac.2020.115893

    Article  CAS  Google Scholar 

  15. Ma JM, Lu L, Wang X, Chen LZ, Lin JM, Zhao RS (2019) Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples. J Hazard Mater 371:433–439. https://doi.org/10.1016/j.jhazmat.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Dong C, An WJ, Zhang YH, Zhao QY, Li ZX, Jiao BN (2020) Simultaneous enantioselective determination of two new isopropanol-triazole fungicides in plant-origin foods using multiwalled carbon nanotubes in reversed-dispersive solid-phase extraction and ultrahigh-performance liquid chromatography–tandem mass spectrometry. J Agric Food Chem 68:5969–5979. https://doi.org/10.1021/acs.jafc.0c01385

    Article  CAS  PubMed  Google Scholar 

  17. Manousi N, Gomez-Gomez B, Madrid Y, Deliyanni EA, Zachariadis GA (2020) Determination of rare earth elements by inductively coupled plasma-mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design. Microchem J 152:104428. https://doi.org/10.1016/j.microc.2019.104428

    Article  CAS  Google Scholar 

  18. Li JM, Zhou YQ, Sun ZA, Cai TP, Wang XX, Zhao SW, Liu HC, Gong BL (2020) Restricted access media-imprinted nanomaterials based on a metal-organic framework for highly selective extraction of fluoroquinolones in milk and river water. J Chromatogr A 1626:461364. https://doi.org/10.1016/j.chroma.2020.461364

    Article  CAS  PubMed  Google Scholar 

  19. Zafar MN, Dar Q, Nawaz F, Zafar MN, Iqbal M, Nazar MF (2019) Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J Mater Res Technol 8:713–725. https://doi.org/10.1016/j.jmrt.2018.06.002

    Article  CAS  Google Scholar 

  20. Niu ZL, Sun YQ, Wang ZC, Wen YY (2022) Self-synthesized TiO2 nanoparticels-pH-mediated dispersive solid-phase extraction coupled with high performance liquid chromatography for the determination of quinolones in biological matrices. J Environ Sci Heal A 57:656–666. https://doi.org/10.1080/10934529.2022.2101340

    Article  CAS  Google Scholar 

  21. Zhu DY, Xu GY, Barnes M, Li YL, Tseng CP, Zhang ZQ, Zhang JJ, Zhu YF, Khalil S, Rahman MM, Verduzco R, Ajayan PM (2021) Covalent organic frameworks for batteries. Adv Funct Mater 31:2100505. https://doi.org/10.1002/adfm.202100505

    Article  CAS  Google Scholar 

  22. Xiong YF, Liao QB, Huang ZP, Huang X, Ke C, Zhu HT, Dong CY, Wang HS, Xi K, Zhan P, Xu F, Lu YQ (2020) Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv Mater 32:1907242. https://doi.org/10.1002/adma.201907242

    Article  CAS  Google Scholar 

  23. Sharma RK, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma RS, Antonietti M, Gawande MB (2020) Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) application. Mater Horiz 7:411–454. https://doi.org/10.1039/C9MH00856J

    Article  CAS  Google Scholar 

  24. Wang LY, Xu H, Gao JK, Yao TM, Zhang QC (2019) Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coord Chem Rev 398:213016. https://doi.org/10.1016/j.ccr.2019.213016

    Article  CAS  Google Scholar 

  25. Peydayesh M, Suter MK, Bolisetty S, Boulos S, Handschin S, Nyström L, Mezzenga R (2020) Amyloid fibrils aerogel for sustainable removal of organic contaminants from water. Adv Mater 32:1907932. https://doi.org/10.1002/adma.201907932

    Article  CAS  Google Scholar 

  26. Chen ZH, Zhao H, Hu YJ, Lai HH, Liu LX, Zhong LX, Peng XW (2020) Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv Funct Mater 30:1910292. https://doi.org/10.1002/adfm.201910292

    Article  CAS  Google Scholar 

  27. Li CX, Yang J, Pachfule P, Li S, Ye MY, Schmidt J, Thomas A (2020) Ultralight covalent organic framework/graphene aerogel with hierarchical porosity. Nat Commun 11:4712. https://doi.org/10.1038/s41467-020-18427-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu DY, Zhu YF, Yan QQ, Barnes M, Liu FX, Yu PF, Tseng CP, Tjahjono N, Huang PC, Rahman MM, Egap E, Ajayan PM, Verduzco R (2021) Pure crystalline covalent organic framework aerogel. Chem Mater 33:4216–4224. https://doi.org/10.1021/acs.chemmater.1c01122

    Article  CAS  Google Scholar 

  29. Zhang ZP, Shi XS, Wang XY, Zhang Z, Wang Y (2023) Encaosulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake. Sep Purif Technol 209:123108. https://doi.org/10.1016/j.seppur.2023.123108

    Article  CAS  Google Scholar 

  30. Liu ZC, Liu Y, Li JS, Zhu WH (2017) Prediction of supramolecular synthons and crystal packing of supramolecular HMX/solvent assemblies. RSC Adv 7:55482–55488. https://doi.org/10.1039/C7RA10043D

    Article  CAS  Google Scholar 

  31. Li QL, Guo SF, Zhang Y, Wo R, Zhao RS, Jiang W (2020) Silver-organic coordination networks for magnetic solid-phase extraction of trihalomethanes from environmental water samples: experimental and theoretical calculation study. J Hazard Mater 396:122741. https://doi.org/10.1016/j.jhazmat.2020.122741

    Article  CAS  PubMed  Google Scholar 

  32. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  33. Saremi F, Miroliaei MR, Nejad MS, Sheibani H (2022) Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. J Mol Liq 318:114126. https://doi.org/10.1016/j.molliq.2020.114126

    Article  CAS  Google Scholar 

  34. Deng JW, Yu TT, Yao Y, Peng Q, Luo LJ, Chem BW, Wang XW, Yang YY, Luan TG (2017) Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Anal Chim Acta 954:52–59. https://doi.org/10.1016/j.aca.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  35. Zhao YJ, Li WH, Liu JM, Huang K, Wu CD, Shao HQ, Chen HY, Liu XT (2017) Modification of garlic peel by nitric acid and its application as a novel adsorbent for solid-phase extraction of quinolone antibiotics. Chem Eng J 326:745–755. https://doi.org/10.1016/j.cej.2017.05.139

    Article  CAS  Google Scholar 

  36. Cui XQ, Zhang PJ, Yang XL, Yang MY, Zhou WF, Zhang SB, Gao HX, Lu RH (2015) β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure (fluoro)quinolone antibiotics in honey samples. Anal Chim Acta 878:131–139. https://doi.org/10.1016/j.aca.2015.03.056

    Article  CAS  PubMed  Google Scholar 

  37. Pang JL, Liao YM, Huang XJ, Ye Z, Yuan DX (2019) Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples. Talanta 99:499–506. https://doi.org/10.1016/j.talanta.2019.03.019

    Article  CAS  Google Scholar 

  38. Englert B, U.S. EPA. Method 1694: Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS, 2007b, EPA821-R-08-002

Download references

Funding

This work is supported by the National Key Research and Development Program of China (2021YFA0910403), National Natural Science Foundation of China (No. 21972102), Jiangsu Laboratory for Biochemical Sensing and Biochip, and Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, Natural Science Foundation of Suzhou University of Science and Technology (No. 332114410).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiulin Li or Chunxian Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Table S1 LC-MS/MS MRM data acquisition method. Table S2 Experimental domain and response surface design matrix for the optimization of the extraction step. Table S3 Parameters of kinetics. Table S4 Parameters of analytical performances. Figure S1 Nitrogen sorption isotherm profile of COFs-aerogel. Figure S2 (A) XPS survey spectrum of the surface of TAPB-DMTP-COFs; (B) XPS spectrum of the O 1s on the TAPB-DMTP-COFs. Figure S3 Response surfaces by BBD for the recovery based on a plot of adsorbent mass versus pH. Figure S4 (A) Typical chromatograms of selected analytes in the surface water sample and spiked sample with 100 ng/L; (B) Cyclic adsorption capacities of COFs-aerogel for the adsorption of QAs. Figure S5 The storage life time of COFs-aerogel (DOCX 2842 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhu, S., Wu, F. et al. Slice-layer COFs-aerogel: a regenerative dispersive solid-phase extraction adsorbent for determination of ultra-trace quinolone antibiotics. Microchim Acta 190, 369 (2023). https://doi.org/10.1007/s00604-023-05925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05925-6

Keywords

Navigation