Skip to main content

Advertisement

Log in

Electrochemical biosensor strategy combining DNA entropy-driven technology to activate CRISPR-Cas13a activity and triple-stranded nucleic acids to detect SARS-CoV-2 RdRp gene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

By merging DNA entropy-driven technology with triple-stranded nucleic acids in an electrochemical biosensor to detect the SARS-CoV-2 RdRp gene, we tackled the challenges of false negatives and the high cost of SARS-CoV-2 detection. The approach generates a CRISPR-Cas 13a-activated RNA activator, which then stimulates CRISPR-Cas 13a activity using an entropy-driven mechanism. The activated CRISPR-Cas 13a can cleave Hoogsteen DNA due to the insertion of two uracil (-U-U-) in Hoogsteen DNA. The DNA tetrahedra changed on the electrode surface and can therefore not construct a three-stranded structure after cleaving Hoogsteen DNA. Significantly, this DNA tetrahedron/Hoogsteen DNA-based biosensor can regenerate at pH = 10.0, which keeps Hoogsteen DNA away from the electrode surface, allowing the biosensor to function at pH = 7.0. We could use this technique to detect the SARS-CoV-2 RdRp gene with a detection limit of 89.86 aM. Furthermore, the detection method is very stable and repeatable. This technique offers the prospect of detecting SARS-CoV-2 at a reasonable cost. This work has potential applications in the dynamic assessment of the diagnostic and therapeutic efficacy of SARS-CoV-2 infection and in the screening of environmental samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu JJ (2021) Special topic: biomedical application of DNA-assembled nanostructure. J Anal Test 5(2):93–94

    Article  Google Scholar 

  2. Pan J, He Y, Liu Z, Chen J (2022) Tetrahedron-based constitutional dynamic network for COVID-19 or other coronaviruses diagnostics and its logic gate applications. Anal Chem 94(2):714–722

    Article  CAS  PubMed  Google Scholar 

  3. Zhang K, Fan Z, Ding Y, Xie M (2022) A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity. Chem Eng J 429:132472

    Article  CAS  PubMed  Google Scholar 

  4. Yu L, Zhu L, Yan M, Feng S, Huang J, Yang X (2021) Electrochemiluminescence biosensor based on entropy-driven amplification and a tetrahedral DNA nanostructure for miRNA-133a detection. Anal Chem 93(34):11809–11815

    Article  CAS  PubMed  Google Scholar 

  5. Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K (2021) Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 178:113015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fan Z, Yao B, Ding Y, Xu D, Zhao J, Zhang K (2022) Rational engineering the DNA tetrahedrons of dual wavelength ratiometric electrochemiluminescence biosensor for high efficient detection of SARS-CoV-2 RdRp gene by using entropy-driven and bipedal DNA walker amplification strategy. Chem Eng J 427:131686

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Deng Y, Wang C, Li L, Xu L, Yu Y et al (2019) Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chem Sci 10(23):5959–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green CM, Hastman DA, Mathur D, Susumu K, Oh E, Medintz IL et al (2021) Direct and efficient conjugation of quantum dots to DNA nanostructures with peptide-PNA. ACS Nano 15(5):9101–9110

    Article  CAS  PubMed  Google Scholar 

  9. Wang D-X, Wang J, Wang Y-X, Du Y-C, Huang Y, Tang A-N et al (2021) DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 12(22):7602–7622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Wang D-X, Ma J-Y, Wang Y-X, Kong D-M (2019) Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem Sci 10(42):9758–9767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu J, Wang J, Hu X, Gyimah E, Yakubu S, Wang K et al (2019) Electrochemical biosensor based on tetrahedral DNA nanostructures and G-quadruplex–hemin conformation for the ultrasensitive detection of microRNA-21 in serum. Anal Chem 91(11):7353–7359

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Zhao B, Wang D, Wen Y, Liu G, Dong H et al (2014) DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids. ACS Appl Mater Inter 6(20):17944–17953

    Article  CAS  Google Scholar 

  13. Zhao L, Qi X, Yan X, Huang Y, Liang X, Zhang L et al (2019) Engineering aptamer with enhanced affinity by triple helix-based terminal fixation. J Am Chem Soc 141(44):17493–17497

    Article  CAS  PubMed  Google Scholar 

  14. Iacovelli F, Idili A, Benincasa A, Mariottini D, Ottaviani A, Falconi M et al (2017) Simulative and experimental characterization of a pH-dependent clamp-like DNA triple-helix nanoswitch. J Am Chem Soc 139(15):5321–5329

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, Cecconello A, Idili A, Ricci F, Willner I (2017) Triplex DNA nanostructures: from basic properties to applications. Angew Chem Int Ed 56(48):15210–15233

    Article  CAS  Google Scholar 

  16. Zhang Z, Wang Y, Zhang N, Zhang S (2016) Self-assembly of nucleic acid molecular aggregates catalyzed by a triple-helix probe for miRNA detection and single cell imaging. Chem Sci 7(7):4184–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamagata Y, Emura T, Hidaka K, Sugiyama H, Endo M (2016) Triple helix formation in a topologically controlled DNA nanosystem. Chem Eur J 22(16):5494–8

    Article  CAS  PubMed  Google Scholar 

  18. Hu F, Liu Y, Zhao S, Zhang Z, Li X, Peng N et al (2022) A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens Bioelectron 202:113994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou T, Huang M, Lin J, Huang R, Xing D (2021) High-fidelity CRISPR/Cas13a trans-cleavage-triggered rolling circle amplified DNAzyme for visual profiling of microRNA. Anal Chem 93(4):2038–2044

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Kang X, Lei C, Ren W, Liu C (2022) Programming the trans-cleavage activity of CRISPR-Cas13a by single-strand DNA blocker and its biosensing application. Anal Chem 94(9):3987–3996

    Article  CAS  PubMed  Google Scholar 

  21. Zhang K, Fan Z, Ding Y, Zhu S, Xie M, Hao N (2022) Exploring the entropy-driven amplification reaction and trans-cleavage activity of CRISPR-Cas12a for the development of an electrochemiluminescence biosensor for the detection of the SARS-CoV-2 RdRp gene in real samples and environmental surveillance. Environ Sci Nano 9(1):162–172

    Article  Google Scholar 

  22. Lee I, Kwon S-J, Sorci M, Heeger PS, Dordick JS (2021) Highly sensitive immuno-CRISPR assay for CXCL9 detection. Anal Chem 93(49):16528–16534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Tian T, Xiong E, Wang P, Zhou X (2020) CRISPR/Cas13a signal amplification linked immunosorbent assay for femtomolar protein detection. Anal Chem 92(1):573–577

    Article  CAS  PubMed  Google Scholar 

  24. Ramachandran A, Santiago JG (2021) CRISPR enzyme kinetics for molecular diagnostics. Anal Chem 93(20):7456–7464

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Tan Z, Wang L, Lei C, Nie Z (2021) A ligation-driven CRISPR–Cas biosensing platform for non-nucleic acid target detections. Chem Commun 57(57):7051–7054

    Article  CAS  Google Scholar 

  26. Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, et al (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10

  27. Suea-Ngam A, Howes PD, deMello AJ (2021) An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem Sci 12(38):12733–12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356(6336):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang K, Zhou L, Zhang T, Fan Z, Xie M, Ding Y et al (2021) Peptide based biosensing of protein functional control indicates novel mechanism of cancerous development under oxidative stress. Sens Actuators B Chem 329:129121

    Article  CAS  Google Scholar 

  30. Zhang K, Li J, Fan Z, Li H, Xu J-J (2021) “Covalent biosensing” enables a one-step, reagent-less, low-cost and highly robust assay of SARS-CoV-2. Chem Commun 57(82):10771–10774

    Article  CAS  Google Scholar 

  31. Xu D, Xu X, Fan Z, Zou M, Qin X, Ding Y et al (2021) Hypersensitive detection of transcription factors by multiple amplification strategy based on molecular beacon. Microchem J 171:106837

    Article  CAS  Google Scholar 

  32. Zhang K, Fan Z, Huang Y, Ding Y, Xie M (2022) A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection. Talanta 236:122868

    Article  CAS  PubMed  Google Scholar 

  33. Tao X-L, Pan M-C, Yang X, Yuan R, Zhuo Y (2022) CDs assembled metal-organic framework: exogenous coreactant-free biosensing platform with pore confinement-enhanced electrochemiluminescence. Chin Chem Lett 33(11):4803–4807

    Article  CAS  Google Scholar 

  34. Zhao H, Su E, Huang L, Zai Y, Liu Y, Chen Z et al (2022) Washing-free chemiluminescence immunoassay for rapid detection of cardiac troponin I in whole blood samples. Chin Chem Lett 33(2):743–746

    Article  CAS  Google Scholar 

  35. Zhang K, Fan Z, Ding Y, Li J, Li H (2021) Thiol-sensitive probe enables dynamic electrochemical assembly of serum protein for detecting SARS-Cov-2 marker protease in clinical samples. Biosens Bioelectron 194:113579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan Z, Ding Y, Yao B, Wang J, Zhang K (2021) Electrochemiluminescence platform for transcription factor diagnosis by using CRISPR–Cas12a trans-cleavage activity. Chem Commun 57(65):8015–8018

    Article  CAS  Google Scholar 

  37. Kumar N, Shetti NP, Jagannath S, Aminabhavi TM (2022) Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem Eng J 430:132966

    Article  CAS  PubMed  Google Scholar 

  38. Fan Z, Xie M, Pan J, Zhang K (2022) SARS-CoV-2 monitoring by automated target-driven molecular machine based engineering. Environ Chem Lett 20 (4):2227–2233

  39. Das D, Lin C-W, Kwon JS, Chuang HS (2022) Rotational diffusometric sensor with isothermal amplification for ultra-sensitive and rapid detection of SARS-CoV-2 nsp2 cDNA. Biosens Bioelectron 210:114293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao H, Liu F, Xie W, Zhou T, OuYang J, Jin L et al (2021) Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens Actuators B Chem 327:128899

    Article  CAS  PubMed  Google Scholar 

  41. Zhou T, Huang R, Huang M, Shen J, Shan Y, Xing D (2020) CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Adv Sci 7(13):1903661

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (21964018, 81860851), Guangxi Medical High-level Leading Talents Training 139 Project (GWKJ2018-22), Special Funding for Guangxi Special Experts (GRCT2019-13), the Natural Science Foundation of Guangxi Province (2018GXNSFDA281017), the Jiangsu Provincial Health Care Commission Scientific Research Project (M2021035), and the Wuxi “Taihu Light” science and technology (medical and health technology) research (Y20212049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhang or Xianjiu Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, C., Song, Z., Cui, J. et al. Electrochemical biosensor strategy combining DNA entropy-driven technology to activate CRISPR-Cas13a activity and triple-stranded nucleic acids to detect SARS-CoV-2 RdRp gene. Microchim Acta 190, 272 (2023). https://doi.org/10.1007/s00604-023-05848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05848-2

Keywords

Navigation