Skip to main content
Log in

Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The SERS intensity of analytes is primarily influenced by the density and distribution of hotspots, which are often difficult to manipulate or regulate. In this study, cucurbit[8]uril (CB[8]), a kind of rigid macrocyclic molecule, was introduced to achieve ~ 1-nm nanogap between gold nanoparticles to increase the density of SERS hotspots. Three kinds of estrogens (estrone (E1), bisphenol A (BPA), and hexestrol (DES)) which are molecules with weak SERS signals were targeted in the hotspots by CB[8] to further improve the sensitivity and selectivity of SERS. It was demonstrated that CB[8] can link gold nanoparticles together through carbonyl groups. In addition, the host–guest interaction of CB[8] and estrogens was proved from the nuclear magnetic resonance hydrogen and infrared spectra. In the presence of CB[8], the SERS intensities of E1, BPA, and DES were increased to 19-fold, 74-fold, and 4-fold, respectively, and the LOD is 3.75 µM, 1.19 µM, and 8.26 µM, respectively. Furthermore, the proposed SERS method was applied to actual milk sample analysis with recoveries of E1 (85.0 ~ 112.8%), BPA (83.0 ~ 103.7%), and DES (62.6 ~ 132.0%). It is expected that the proposed signal enlarging strategy can be applied to  other analytes after further development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Ding SY, You EM, Tian ZQ et al (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy [J]. Chem Soc Rev 46:4042–4076

    CAS  PubMed  Google Scholar 

  2. Su D, Yang S, Xiong Y et al (2022) Ordered gold nanocluster based plasmonic hotspot arrays for SERS detection of single molecules [J]. ACS Appl Nano Mater 5:17067–17077

    CAS  Google Scholar 

  3. Huh S, Park J, Kim YS et al (2011) Uv/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering[J]. ACS Nano 5:9799–9806

    CAS  PubMed  Google Scholar 

  4. Park WH, Kim ZH (2010) Charge transfer enhancement in the SERS of a single molecule[J]. Nano Lett 10:4040–4048

    CAS  PubMed  Google Scholar 

  5. Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering[J]. Acc Chem Res 42:734–742

    CAS  PubMed  Google Scholar 

  6. Lim DK, Jeon KS, Kim HM et al (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection[J]. Nat Mater 9:60–67

    CAS  PubMed  Google Scholar 

  7. Lim DK, Jeon KS, Hwang JH et al (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap[J]. Nat Nanotechnol 6:452–460

    CAS  PubMed  Google Scholar 

  8. Lee H, Lee JH, Jin SM et al (2013) Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with similar to 1 nm gap and surface-enhanced Raman scattering[J]. Nano Lett 13:6113–6121

    CAS  PubMed  Google Scholar 

  9. Nam JM, Oh JW, Lee H et al (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles[J]. Acc Chem Res 49:2746–2755

    CAS  PubMed  Google Scholar 

  10. Yang W, Lim DK (2020) Recent advances in the synthesis of intra-nanogap Au plasmonic nanostructures for bioanalytical applications[J]. Adv Mater 32:2002219

    CAS  Google Scholar 

  11. Tan LL, Wei M, Shang L et al (2021) Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis [J]. Adv Func Mater 31:2007277

    CAS  Google Scholar 

  12. Li JJ, Deng TS, Liu XY et al (2019) Hierarchical assembly of plasmonic nanoparticle heterodimer arrays with tunable sub-5 nm nanogaps[J]. Nano Lett 19:4314–4320

    CAS  PubMed  Google Scholar 

  13. Cha H, Yoon JH, Yoon S (2014) Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range[J]. ACS Nano 8:8554–8563

    CAS  PubMed  Google Scholar 

  14. Indrasekara A, Meyers S, Shubeita S et al (2014) Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime[J]. Nanoscale 6:8891–8899

    CAS  PubMed  Google Scholar 

  15. Benz F, Tserkezis C, Herrmann LO et al (2015) Nanooptics of molecular-shunted plasmonic nanojunctions[J]. Nano Lett 15:669–674

    CAS  PubMed  Google Scholar 

  16. Li PH, Li Y, Zhou ZK et al (2016) Evaporative self-assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays[J]. Adv Mater 28:2511–2517

    CAS  PubMed  Google Scholar 

  17. Li D, Qi LM (2018) Self-assembly of inorganic nanoparticles mediated by host-guest interactions[J]. Curr Opin Colloid Interface Sci 35:59–67

    CAS  Google Scholar 

  18. Xiao B, He S, Sun M et al (2022) Dynamic interconversions of single molecules probed by recognition tunneling at cucurbit[7]uril functionalized supramolecular junctions [J]. Angewandte Chemie-International Edition 61:e202203830

    CAS  PubMed  Google Scholar 

  19. Der Pozo M, Casero E, Quintana C (2017) Visual and spectrophotometric determination of cadaverine based on the use of gold nanoparticles capped with cucurbiturils or cyclodextrins [J]. Microchim Acta 184:2107–2114

    Google Scholar 

  20. Kim NH, Hwang W, Baek K et al (2018) Smart SERS hot spots: single molecules can be positioned in a plasmonic nanojunction using host guest chemistry [J]. J Am Chem Soc 140:4705–4711

    CAS  PubMed  Google Scholar 

  21. Chio WIK, Xie HM, Zhang YW et al (2022) SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology[J]. Trac-Trends in Anal Chem 146:116485

    CAS  Google Scholar 

  22. Lagona J, Mukhopadhyay P, Chakrabarti S et al (2005) The cucurbit[n]uril family[J]. Angewandte Chemie-International Edition 44:4844–4870

    CAS  PubMed  Google Scholar 

  23. Kasera S, Biedermann F, Baumberg JJ et al (2012) Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs[J]. Nano Lett 12:5924–5928

    CAS  PubMed  Google Scholar 

  24. Barrow SJ, Kasera S, Rowland MJ et al (2015) Cucurbituril-based molecular recognition[J]. Chem Rev 115:12320–12406

    CAS  PubMed  Google Scholar 

  25. Biedermann F, Scherman OA (2012) Cucurbit[8]uril mediated donor-acceptor ternary complexes: a model system for studying charge-transfer interactions[J]. J Phys Chem B 116:2842–2849

    CAS  PubMed  Google Scholar 

  26. Kim J, Jung IS, Kim SY et al (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8) [J]. J Am Chem Soc 122:540–541

    CAS  Google Scholar 

  27. Shi XH, Gu W, Zhang CL et al (2016) Construction of a graphene/Au-nanoparticles/cucurbit[7]uril-based sensor for Pb2+ sensing[J], Chemistry-A. Eur J 22:5643–5648

    CAS  Google Scholar 

  28. Jones ST, Taylor RW, Esteban R et al (2014) Gold nanorods with sub-nanometer separation using cucurbit[n]uril for SERS applications[J]. Small 10:4298–4303

    CAS  PubMed  Google Scholar 

  29. Salmon AR, Esteban R, Taylor RW et al (2016) Monitoring early-stage nanoparticle assembly in microdroplets by optical spectroscopy and SERS[J]. Small 12:1788–1796

    CAS  PubMed  Google Scholar 

  30. Husken N, Taylor RW, Zigah D et al (2013) Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled subnanometer junctions[J]. Nano Lett 13:6016–6022

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chio WK, Davison G, Jones T et al (2020) Quantitative SERS detection of uric acid via formation of precise plasmonic nanojunctions within aggregates of gold nanoparticles and cucurbit[n]uril[J]. J Vis Exp 3:e61682

    Google Scholar 

  32. Sigle DO, Kasera S, Herrmann LO et al (2016) Observing single molecules complexing with cucurbit[7]uril through nanogap surface-enhanced Raman spectroscopy[J]. Phys Chem Lett 7:704–710

    CAS  Google Scholar 

  33. Liu SY, Chen YQ, Wang Y et al (2019) Group-targeting detection of total steroid estrogen using surface-enhanced Raman spectroscopy[J]. Anal Chem 91:7639–7647

    CAS  PubMed  Google Scholar 

  34. Han XX, Pienpinijtham P, Zhao B et al (2011) Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance Raman scattering[J]. Anal Chem 83:8582–8588

    CAS  PubMed  Google Scholar 

  35. Liu Y, Chen Y, Zhang Y et al (2018) Detection and identification of estrogen based on surface-enhanced resonance Raman scattering (SERRS)[J]. Molecules 23:1330

    PubMed  PubMed Central  Google Scholar 

  36. Liang X, Li L, Dong Y et al (2022) Rapid detection of five estrogens added illegally to dietary supplements by combining TLC with Raman imaging microscope[J]. Molecules 27:2650

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quan Y, Yao J, Yang S et al (2019) ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A[J]. Microchim Acta 186:593

    Google Scholar 

  38. Wang Z, Wang JJ, Lai Y et al (2021) Rapid detection of estrogen compounds using surface-enhanced Raman spectroscopy with a Zn/Au-Ag/Ag sandwich-structured substrate[J]. Opt Mater 112:110759

    CAS  Google Scholar 

  39. GB/T31658.9-2021 (2021) National food safety standard-determination of estrogen residues in animal derived foods and animal urine by liquid chromatography-tandem mass spectrometry method. State administration for market regulation, standardization administration of the People’s Republic of China

  40. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature (Physical Science) 241:20–22

    CAS  Google Scholar 

  41. Chen Y, Li X, Yang M et al (2017) High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta 167:236–241

    CAS  PubMed  Google Scholar 

  42. Taylor RW, Lee TC, Scherman OA et al (2011) Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”[J]. ACS Nano 5:3878–3887

    CAS  PubMed  Google Scholar 

  43. An Q, Li GT, Tao CG et al (2008) A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces[J]. Chem Commun 17:1989–1991

  44. Lee TC, Scherman OA (2010) Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles[J]. Chem Commun 46:2438–2440

    CAS  Google Scholar 

  45. Huang T, Meng F, Qi LM (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering[J]. J Phys Chem C 113:13636–13642

    CAS  Google Scholar 

  46. Houk KN, Leach AG, Kim SP et al (2003) Bindungsaffinitäten von wirt-gast-, protein-ligand- und protein-Übergangszustands-komplexen[J]. Angew Chem Int Ed 115:5020–5046

    Google Scholar 

  47. Biedermann F, Uzunova VD, Scherman OA et al (2012) Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils[J]. J Am Chem Soc 134:15318–15323

    CAS  PubMed  Google Scholar 

  48. Chio WIK, Peveler WJ, Assaf KI et al (2019) Selective detection of nitroexplosives using molecular recognition within self-assembled plasmonic nanojunctions[J]. J Phys Chem C 123:15769–15776

    CAS  Google Scholar 

  49. Biedermann F, Nau WM, Schneider HJ (2014) The hydrophobic effect revisited-studies with supramolecular complexes imply high-energy water as a noncovalent driving force[J]. Angewandte Chemie-International Edition 53:11158–11171

    CAS  PubMed  Google Scholar 

  50. Taylor RW, Coulston RJ, Biedermann F et al (2013) In situ SERS monitoring of photochemistry within a nanojunction reactor[J]. Nano Lett 13:5985–5990

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasera S, Herrmann LO, del Barrio J et al (2014) Quantitative multiplexing with nano-self-assemblies in SERS[J]. Sci Rep 4:6785

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Natural Science Foundation of Zhejiang Province (LQ17B050002) and Analysis and Measurement Foundation of Zhejiang Province (LGC21B050004) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanjie Teng or Nan Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1772 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Li, X., Chen, Y. et al. Cucurbit[8]uril-mediated SERS plasmonic nanostructures with sub-nanometer gap for the identification and determination of estrogens. Microchim Acta 190, 185 (2023). https://doi.org/10.1007/s00604-023-05765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05765-4

Keywords

Navigation