Skip to main content
Log in

Photoelectrochemical aptasensing of oxytetracycline based on a BiVO4-carboxylated graphene-WO3 Z-scheme heterojunction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new BiVO4-carboxylated graphene (cG)-WO3 Z-scheme heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode by ultrasonic mixing and cast-coating for determination of oxytetracycline (OTC). Since cG can absorb visible light and well match with the energy levels of WO3 and BiVO4 to promote the charge separation and transfer, the photocurrent on the BiVO4-cG-WO3/FTO photoelectrode is 4.4 times that on the control BiVO4-WO3/FTO photoelectrode. An amino-functionalized OTC aptamer was fixed on the BiVO4-cG-WO3/FTO photoelectrode by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide mediated amide reaction, and then hexaammonium ruthenium(III) (Ru(NH3)63+) was attached to the OTC aptamer to increase the photocurrent response to the OTC binding. Under the optimized conditions, the photocurrent on the BiVO4-cG-WO3/FTO photoelectrode at 0 V vs SCE was linear with the common logarithm of OTC concentration from 0.01 nM to 500 nM, with a limit of detection of 3.1 pM (S/N = 3). Satisfactory recovery results were obtained in the analysis of real water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

Data availability

We confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Esmaelpourfarkhani M, Abnous K, Taghdisi SM, Chamsaz M (2019) A fluorometric assay for oxytetracycline based on the use of its europium(III) complex and aptamer-modified silver nanoparticles. Microchim Acta 186:290–296. https://doi.org/10.1007/s00604-019-3389-6

    Article  CAS  Google Scholar 

  2. You F, Wei J, Cheng Y, Wen Z, Ding C, Guo Y, Wang K (2020) A sensitive and stable visible-light-driven photoelectrochemical aptasensor for determination of oxytetracycline in tomato samples. J Hazard Mater 398:122944–122951. https://doi.org/10.1016/j.jhazmat.2020.122944

    Article  CAS  PubMed  Google Scholar 

  3. Anonymous (1990) Evaluation of certain food additives and contaminants. Thirty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 789:1–48

    Google Scholar 

  4. Himmelsbach M, Buchberger W (2005) Residue analysis of oxytetracycline in water and sediment samples by high-performance liquid chromatography and immunochemical techniques. Microchim Acta 151:67–72. https://doi.org/10.1007/s00604-005-0372-1

    Article  CAS  Google Scholar 

  5. Wang S, Yang P, Cheng Y (2007) Analysis of tetracycline residues in bovine milk by CE-MS with field-amplified sample stacking. Electrophor 28:4173–4179. https://doi.org/10.1002/elps.200700276

    Article  CAS  Google Scholar 

  6. Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183:723–729. https://doi.org/10.1007/s00604-015-1718-y

    Article  CAS  Google Scholar 

  7. Ling LY, Yuan C, Xu QY, Li TH, Zhu MS, Zhai CY (2023) Directional charge separation on 2D/2D BiVO4/MXene for the enhanced photoelectrochemical detection of oxytetracycline antibiotic in water. Surf Interfaces 36:10283–10290. https://doi.org/10.1016/j.surfin.2022.102483

    Article  CAS  Google Scholar 

  8. Lv J, Chen X, Chen S, Li H, Deng H (2019) A visible light induced ultrasensitive photoelectrochemical sensor based on Cu3Mo2O9/BaTiO3 p-n heterojunction for detecting oxytetracycline. J Electroanal Chem 842:161–167. https://doi.org/10.1016/j.jelechem.2019.04.070

    Article  CAS  Google Scholar 

  9. Yan K, Liu Y, Yang Y, Zhang J (2015) A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline. Anal Chem 87:12215–12220. https://doi.org/10.1021/acs.analchem.5b03139

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Wen Z, Wang T, Zhang M, Ding C, Guo Y, Jiang D, Wang K (2020) Ternary Z-scheme heterojunction of Bi SPR-promoted BiVO4/g-C3N4 with effectively boosted photoelectrochemical activity for constructing oxytetracycline aptasensor. Biosens Bioelectron 166:112453–112460. https://doi.org/10.1016/j.bios.2020.112453

    Article  CAS  PubMed  Google Scholar 

  11. Peng B, Zhang Z, Tang L, Ouyang X, Zhu X, Chen L, Fan X, Zhou Z, Wang J (2021) Self-powered photoelectrochemical aptasensor for oxytetracycline cathodic detection based on a dual Z-scheme WO3/g-C3N4/MnO2 photoanode. Anal Chem 93:9129–9138. https://doi.org/10.1021/acs.analchem.1c00929

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, Han J, Zhou X, Huang L, Zhang F, Wang X, Ding C, Zheng X, Han H, Li C (2013) Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. J Catal 307:148–152. https://doi.org/10.1016/j.jcat.2013.06.024

    Article  CAS  Google Scholar 

  13. Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A (2018) An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water wplitting efficiency. ACS Sustain Chem Eng 6:12906–12913. https://doi.org/10.1021/acssuschemeng.8b02267

    Article  CAS  Google Scholar 

  14. Yu Z, Lv S, Ren R, Cai G, Tang D (2017) Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Microchim Acta 184:799–806. https://doi.org/10.1007/s00604-016-2071-5

    Article  CAS  Google Scholar 

  15. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057. https://doi.org/10.1021/ja203296z

    Article  CAS  PubMed  Google Scholar 

  16. Quang ND, Van PC, Majumder S, Jeong J-R, Kim D, Kim C (2022) Optimization of photogenerated charge transport using type-II heterojunction structure of CoP/BiVO4:WO3 for high efficient solar-driver water splitting. J Alloy Compd 899:163292–163302. https://doi.org/10.1016/j.jallcom.2021.163292

    Article  CAS  Google Scholar 

  17. Lee MG, Kim DH, Sohn W, Moon CW, Park H, Lee S, Jang HW (2016) Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy 28:250–260. https://doi.org/10.1016/j.nanoen.2016.08.046

    Article  CAS  Google Scholar 

  18. Xu S, Fu D, Song K, Wang L, Yang Z, Yang W, Hou H (2018) One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J 349:368–375. https://doi.org/10.1016/j.cej.2018.05.100

    Article  CAS  Google Scholar 

  19. Wang Z, Lv J, Zhang J, Dai K, Liang C (2018) Facile synthesis of Z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst. Appl Surf Sci 430:595–602. https://doi.org/10.1016/j.apsusc.2017.06.093

    Article  CAS  Google Scholar 

  20. Sun C, Liu L, Guo C, Shen Y, Peng Y, Xie Q (2022) Photoelectrochemical biosensing of leukemia gene based on CdS/AuNPs/FeOOH Z-scheme heterojunction and a facile reflective device. Sens Actuators, B Chem 362:131795–131804. https://doi.org/10.1016/j.snb.2022.131795

    Article  CAS  Google Scholar 

  21. Zhu H, Zhang C, Xie K, Li X, Liao G (2023) Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: Revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism. Chem Eng J 453:139775–139788. https://doi.org/10.1016/j.cej.2022.139775

    Article  CAS  Google Scholar 

  22. Yang F, Zhang Q, Zhang J, Zhang L, Cao M, Dai W-L (2020) Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-Scheme photocatalytic hydrogen evolution. Appl Catal B 278:119290–119300. https://doi.org/10.1016/j.apcatb.2020.119290

    Article  CAS  Google Scholar 

  23. Li Y, Kexin C, Wang X, Xiao Z, Liao G, Wang J, Li X, Tang Y, He C, Li L (2022) Efficient removal of TBBPA with a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst under sunlight irradiation. Chemosphere 308:136259–136267. https://doi.org/10.1016/j.chemosphere.2022.136259

    Article  CAS  PubMed  Google Scholar 

  24. Zhu P, Zhang S, Liu R, Luo D, Yao H, Zhu T, Bai X (2022) Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics. J Solid State Chem 314:123379–123391. https://doi.org/10.1016/j.jssc.2022.123379

    Article  CAS  Google Scholar 

  25. Sun W, Zhang Y, Hu A, Lu Y, Shi F, Lei B, Sun Z (2013) Electrochemical DNA biosensor based on partially reduced graphene oxide modified carbon Ionic liquid electrode for the detection of transgenic soybean A2704–12 gene sequence. Electroanalysis 25:1417–1424. https://doi.org/10.1002/elan.201300069

    Article  CAS  Google Scholar 

  26. Guo WJ, Umar A, Algadi H, Albargi H, Ibrahim AA, Cui KL, Wang LY, Pei MS, Wang Y (2021) Design of a unique “ON/OFF” switch electrochemical aptasensor driven by the pH for the detection of Aflatoxin B1 in acid solutions based on titanium carbide/carboxylated graphene oxide-poly(4-vinyl pyridine)/Aptamer composite. Microchem J 169:106548–106557. https://doi.org/10.1016/j.microc.2021.106548

    Article  CAS  Google Scholar 

  27. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Ebrahimi V (2017) A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosens Bioelectron 98:113–118. https://doi.org/10.1016/j.bios.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  28. Xing Y, Chen X, Jin B, Chen P, Huang C, Jin Z (2021) Photoelectrochemical aptasensors constructed with photosensitive PbS quantum dots/TiO2 nanoparticles for detection of kanamycin. Langmuir 37:3612–3619. https://doi.org/10.1021/acs.langmuir.0c03593

    Article  CAS  PubMed  Google Scholar 

  29. Feng J, Li Y, Gao Z, Lv H, Zhang X, Dong Y, Wang P, Fan D, Wei Q (2018) A competitive-type photoelectrochemical immunosensor for aflatoxin B1 detection based on flower-like WO3 as matrix and Ag2S-enhanced BiVO4 for signal amplification. Sens Actuators B-Chem 270:104–111. https://doi.org/10.1016/j.snb.2018.05.015

    Article  CAS  Google Scholar 

  30. Yang J, Li W, Li J, Sun D, Chen Q (2012) Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem 22:17744–17752. https://doi.org/10.1039/c2jm33199c

    Article  CAS  Google Scholar 

  31. Jiang D, Yang C, Fan Y, Leung H-MP, Inthavong K, Zhang Y, Li Z, Yang M (2021) Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3·H2O@N-GQDs). Biosens Bioelectron 183:113214–113221. https://doi.org/10.1016/j.bios.2021.113214

    Article  CAS  PubMed  Google Scholar 

  32. Nandal N, Manwar NR, Abraham BM, Khatri PK, Jain SL (2022) Photoelectrochemical reduction of CO2 promoted by a molecular hybrid made up of Co(II)Pc on graphene oxide under visible light illumination. Energy Fuels 36:3760–3770. https://doi.org/10.1021/acs.energyfuels.2c00096

    Article  CAS  Google Scholar 

  33. Ke J, Zhou HR, Liu J, Zhang ZG, Duan XG, Wang SB (2019) Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J Colloid Interface Sci 555:413–422. https://doi.org/10.1016/j.jcis.2019.08.008

    Article  CAS  PubMed  Google Scholar 

  34. Kumbhar VS, Lee H, Lee J, Lee K (2019) Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting. J Colloid Interface Sci 557:478–487. https://doi.org/10.1016/j.jcis.2019.09.037

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22074039, 21675050).

Author information

Authors and Affiliations

Authors

Contributions

Yuru Shen: Conceptualization, Writing-original draft. Chenglong Sun: Investigation. Mingjian Chen: Investigation. Yun Du: Investigation. Jun Cheng: Investigation. Yunlong Li: Investigation, Funding acquisition, Writing—review & editing, Qingji Xie: Conceptualization, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Yunlong Li or Qingji Xie.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 795 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Sun, C., Chen, M. et al. Photoelectrochemical aptasensing of oxytetracycline based on a BiVO4-carboxylated graphene-WO3 Z-scheme heterojunction. Microchim Acta 190, 193 (2023). https://doi.org/10.1007/s00604-023-05742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05742-x

Keyword

Navigation