Skip to main content
Log in

A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The detection signal of carbohydrate antigen 125 (CA125) can be quantitatively amplified via the dual metal–organic framework (MOF) sandwich strategy. We propose a versatile method for synthesizing uniform MXene and MIL-101(Fe)-NH2 composites that combine the advantages of both materials to build a base layer with superb performance. MXene exhibits excellent electrical conductivity and high surface area. The mesoporous MIL-101(Fe)-NH2 not only increases the loading capacity of the primary antibody but also possesses the catalytic activity of the metal center (Fe). UiO66 loaded with methylene blue (MB) was fabricated as an electrochemical immunosensor signal tag to enable the detection of CA125. The mixture of MXene and MIL-101(Fe)-NH2 prepared as the substrate was fixed by chitosan rich in amino groups. As the signal amplification sector, UiO66@MB enhanced secondary antibody loading capacity and generated a redox signal enabling the detection of antigenic substances. The proposed electrochemical immunosensor demonstrated high sensitivity with a low limit of detection (LOD) of 0.006 U/mL. Therefore, the dual MOF sandwich-based immunosensor provides a novel method for the early diagnosis of CA125.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sjövall K, Nilsson B, Einhorn N (2002) The significance of serum CA 125 elevation in malignant and nonmalignant diseases. Gynecol Oncol 85(1):175–178. https://doi.org/10.1006/gyno.2002.6603

    Article  PubMed  Google Scholar 

  2. Al-Ogaidi I, Aguilar ZP, Suri S, Gou H, Wu N (2013) Dual detection of cancer biomarker CA125 using absorbance and electrochemical methods. Analyst 138:5647–5653. https://doi.org/10.1039/c3an00668a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luo S, Ou Y, Zheng T, Jiang H, Wu Y, Zhao J, Zhang Z (2021) Optimal strategy for colorectal cancer patients’ diagnosis based on circulating tumor cells and circulating tumor endothelial cells by subtraction enrichment and immunostaining-fluorescence in situ hybridization combining with CEA and CA19-9. J Oncol 2021:1–9. https://doi.org/10.1155/2021/1517488

    Article  CAS  Google Scholar 

  4. Wang M, Hu M, Li Z, He L, Song Y, Jia Q, Zhang Z, Du M (2019) Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens Bioelectron 142:111536. https://doi.org/10.1016/j.bios.2019.111536

    Article  CAS  PubMed  Google Scholar 

  5. Rebelo TSCR, Ribeiro JA, Sales MGF, Pereira CM (2021) Electrochemical immunosensor for detection of CA 15–3 biomarker in point-of-care. Sens Bio-Sens Res 33:100446. https://doi.org/10.1016/j.sbsr.2021.100445

    Article  Google Scholar 

  6. Gao H, Zhang Z, Zhang Y, Yu H, Rong S, Meng L, Song S, Mei Y, Pan H, Chang D (2021) Electrochemiluminescence immunosensor for cancer antigen 125 detection based on novel resonance energy transfer between graphitic carbon nitride and NIR CdTe/CdS QDs. J Electroanal Chem 886:115104. https://doi.org/10.1016/j.jelechem.2021.115104

    Article  CAS  Google Scholar 

  7. Mo G, He X, Qin D, Meng S, Wu Y, Deng B (2021) Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19–9 and carbohydrate antigen 24–2. Biosens Bioelectron 178:113024. https://doi.org/10.1016/j.bios.2021.113024

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca J, Gong T, Jiao L, Jiang H (2021) Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of materials chemistry. Mater Energy Sustain 9:1562–1611. https://doi.org/10.1039/d1ta01043c

    Article  CAS  Google Scholar 

  9. Lin Y, Li Y, Cao Y, Wang X (2021) Two-dimensional MOFs: design & synthesis and applications. Chem Asian J 16:3281–3298. https://doi.org/10.1002/asia.202100884

    Article  CAS  PubMed  Google Scholar 

  10. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Mixed-metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angew Chem Int Ed 131:15330–15347. https://doi.org/10.1002/ange.201902229

    Article  Google Scholar 

  11. Zhong X, Zhang M, Guo L, Xie Y, Luo R, Chen W, Cheng F, Wang L (2021) A dual-signal self-checking photoelectrochemical immunosensor based on the sole composite of MIL-101(Cr) and CdSe quantum dots for the detection of α-fetoprotein. Biosens Bioelectron 189:113389. https://doi.org/10.1016/j.bios.2021.113389

    Article  CAS  PubMed  Google Scholar 

  12. Daglar H, Gulbalkan HC, Avci G, Aksu GO, Altundal OF, Altintas C et al (2021) Effect of metal-organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs. Angew Chem Int Ed 60:7828–7837. https://doi.org/10.1002/anie.202015250

    Article  CAS  Google Scholar 

  13. Rivera-Torrente M, Mandemaker L, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM (2020) Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 49:6694–6732. https://doi.org/10.1039/d0cs00635a

    Article  CAS  PubMed  Google Scholar 

  14. AbánadesLázaro I, Haddad S, Rodrigo-Muñoz JM, Marshall RJ, Sastre B, Del Pozo V, Fairen-Jimenez D, Forgan RS (2018) Surface-functionalization of Zr-fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl Mater Inter 10:31146–31157. https://doi.org/10.1021/acsami.8b11652

    Article  CAS  Google Scholar 

  15. Yao MS, Xiu JW, Huang QQ, Li WH, Wu WW, Wu AQ, Cao LA, Deng WH, Wang GE, Xu G (2019) Van der Waals Heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew Chem Int Ed 58:14915–14919. https://doi.org/10.1002/anie.201907772

    Article  CAS  Google Scholar 

  16. Wang Z, Yan Z, Wang F, Cai J, Guo L, Su J, Liu Y (2017) Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens Bioelectron 97:107–114. https://doi.org/10.1016/j.bios.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  17. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47:5109–5124. https://doi.org/10.1039/c7cs00838d

    Article  CAS  PubMed  Google Scholar 

  18. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  19. Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, Kent PRC, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9:9507–9516. https://doi.org/10.1021/acsnano.5b03591

    Article  CAS  PubMed  Google Scholar 

  20. Zhu J, Ha E, Zhao G, Zhou Y, Huang D, Yue G, Hu L, Sun N, Wang Y, Lee LYS, Xu C, Wong K, Astruc D, Zhao P (2017) Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordin Chem Rev 352:306–327. https://doi.org/10.1016/j.ccr.2017.09.012

    Article  CAS  Google Scholar 

  21. Wang S, Zhao X, Yan X, Liu C, Yang X (2019) Regulating fast anionic redox for high-voltage aqueous hydrogen-ion based energy storage. Angew Chem Int Ed 131:211–216. https://doi.org/10.1002/anie.201811220

    Article  CAS  Google Scholar 

  22. Guo R, Xiao M, Wan Z, Zhou S, Hu Y, Liao M, Wang S, Yang X, Chai R, Tang M (2022) 2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomater 139:105–117. https://doi.org/10.1016/j.actbio.2020.12.035

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H, Lv J, Xu H, Zhao X, Jia X, Tan L (2019) In-situ synthesis of MXene/ZnCo2O4 nanocomposite with enhanced catalytic activity on thermal decomposition of ammonium perchlorate. J Solid State Chem 279:120947. https://doi.org/10.1016/j.jssc.2019.12094

    Article  CAS  Google Scholar 

  24. Lu X, Huang H, Zhang X, Lin P, Huang J, Sheng X, Zhang L, Qu J (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos Part B: Eng 177:107. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  25. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–202:250–259. https://doi.org/10.1016/j.jhazmat.2011.11.076

    Article  CAS  PubMed  Google Scholar 

  26. de Castro ACH, Alves LM, Siquieroli ACS, Madurro JM, Brito-Madurro AG (2020) Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem J 155:104746. https://doi.org/10.1016/j.microc.2020.104746

    Article  CAS  Google Scholar 

  27. Szymańska B, Lukaszewski Z, Hermanowicz-Szamatowicz K, Gorodkiewicz E (2020) A biosensor for determination of the circulating biomarker CA125/MUC16 by Surface Plasmon Resonance Imaging. Talanta 206:120187. https://doi.org/10.1016/j.talanta.2019.120187

    Article  CAS  PubMed  Google Scholar 

  28. SamadiPakchin P, Fathi M, Ghanbari H, Saber R, Omidi Y (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029. https://doi.org/10.1016/j.bios.2020.112029

    Article  CAS  Google Scholar 

  29. SamadiPakchin P, Ghanbari H, Saber R, Omidi Y (2018) Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens Bioelectron 122:68–74. https://doi.org/10.1016/j.bios.2018.09.016

    Article  CAS  Google Scholar 

  30. Zhang X, Wang Y, Deng H, Xiong X, Zhang H, Liang T, Li C (2021) An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchem J 161:105761. https://doi.org/10.1016/j.microc.2020.105761

    Article  CAS  Google Scholar 

  31. Wu L, Sha Y, Li W, Wang S, Guo Z, Zhou J, Su X, Jiang X (2016) One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sens Actuators, B Chem 226:62–68. https://doi.org/10.1016/j.snb.2015.11.133

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22108170, 22008011, 81973097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Li or Hongzhi Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4.26 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Wu, M., Zhao, L. et al. A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125. Microchim Acta 190, 147 (2023). https://doi.org/10.1007/s00604-023-05719-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05719-w

Keywords

Navigation