Skip to main content
Log in

Specific capture and determination of glycoprotein using a hybrid epitopes and monomers-mediated molecular-imprinted polymer enzyme-free electrochemical biosensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract 

A novel molecular-imprinted polymer (MIP)–based enzyme-free biosensor was created for the selective detection of glycoprotein transferrin (Trf). For this purpose, MIP-based biosensor for Trf was prepared by electrochemical co-polymerization of novel hybrid monomers 3-aminophenylboronic acid (M-APBA) and pyrrole on a glassy carbon electrode (GCE) modified with carboxylated multi-walled carbon nanotubes (cMWCNTs). Hybrid epitopes of Trf (C-terminal fragment and glycan) have been selected as templates. The produced sensor exhibited great selective recognition ability toward Trf under optimal preparation conditions, offering good analytical range (0.125–1.25 μM) with a detection limit of 0.024 μM. The proposed hybrid epitope in combination with hybrid monomer-mediated imprinting strategy was successfully applied to detect Trf in spiked human serum samples, with recoveries and relative standard deviations ranging from 94.7 to 106.0% and 2.64 to 5.32%, respectively. This study provided a reliable protocol for preparing hybrid epitopes and monomers-mediated MIP for the synergistic and effective determination of glycoprotein in complicated biological samples.

Graphical Abstract 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated in this article are included within the main texts and its supplementary information file. Data will be also available on request.

References 

  1. Chen H, Liu K, Li Z, Wang P (2019) Point of care testing for infectious diseases. Clin Chim Acta 493:138–147. https://doi.org/10.1016/j.cca.2019.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shrivastava S, Trung TQ, Lee NE (2020) Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 49(6):1812–1866. https://doi.org/10.1039/c9cs00319c

    Article  CAS  PubMed  Google Scholar 

  3. Caslavska J, Joneli J, Wanzenried U, Schiess J, Thormann W (2012) Transferrin immunoextraction for determination of carbohydrate-deficient transferrin in human serum by capillary zone electrophoresis. J Sep Sci 35(24):3521–3528. https://doi.org/10.1002/jssc.201200712

    Article  CAS  PubMed  Google Scholar 

  4. Brandsma ME, Jevnikar AM, Ma S (2011) Recombinant human transferrin: beyond iron binding and transport. Biotechnol Adv 29(2):230–238. https://doi.org/10.1016/j.biotechadv.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  5. Keenan J, Pearson D, O’Driscoll L, Gammell P, Clynes M (2006) Evaluation of recombinant human transferrin (DeltaFerrin(TM)) as an iron chelator in serum-free media for mammalian cell culture. Cytotechnology 51(1):29–37. https://doi.org/10.1007/s10616-006-9011-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duan R, Peng C, Sun L, Zhang L-X, Bai C-C, Dong L-Y, Wang X-H (2021) Integrating boronate affinity controllable-oriented surface imprinting nylon wire and pH-triggered allochroic-graphene oxide for ultrasensitive detection of glycoprotein. Sensors and Actuators B: Chemical 330:129310. https://doi.org/10.1016/j.snb.2020.129310

    Article  CAS  Google Scholar 

  7. Rasouli Z, Ghavami R (2020) Simultaneous optical detection of human serum albumin and transferrin in body fluids. Mikrochim Acta 187(4):208. https://doi.org/10.1007/s00604-020-4178-y

    Article  CAS  PubMed  Google Scholar 

  8. Ma X, Li M, Tong P, Zhao C, Li J, Xu G (2020) A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule. Biosens Bioelectron 156:112150. https://doi.org/10.1016/j.bios.2020.112150

    Article  CAS  PubMed  Google Scholar 

  9. Zhao W, Li B, Xu S, Zhu Y, Liu X (2020) A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer: cases of bovine serum albumin and trypsin sensing. Anal Chim Acta 1117:25–34. https://doi.org/10.1016/j.aca.2020.04.023

    Article  CAS  PubMed  Google Scholar 

  10. Kalecki J, Iskierko Z, Cieplak M, Sharma PS (2020) Oriented immobilization of protein templates: a new trend in surface imprinting. ACS Sens 5(12):3710–3720. https://doi.org/10.1021/acssensors.0c01634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akiba U, Anzai JI (2016) Recent progress in electrochemical biosensors for glycoproteins. Sensors (Basel) 16 (12):2045. https://doi.org/10.3390/s16122045

  12. Xing R, Guo Z, Lu H, Zhang Q, Liu Z (2022) Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity (97–93). Science Bulletin 67(3):278–287. https://doi.org/10.1016/j.scib.2021.10.006

    Article  CAS  PubMed  Google Scholar 

  13. Kumar V, Kim KH (2022) Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. Environ Pollut 299:118824. https://doi.org/10.1016/j.envpol.2022.118824

    Article  CAS  PubMed  Google Scholar 

  14. Lee MH, Liu KH, Thomas JL, Chen CY, Chen CY, Yang CH, Lin HY (2022) Doping of MXenes enhances the electrochemical response of peptide-imprinted conductive polymers for the recognition of C-Reactive protein. Biosens Bioelectron 200:113930. https://doi.org/10.1016/j.bios.2021.113930

    Article  CAS  PubMed  Google Scholar 

  15. Batista AD, Rajpal S, Keitel B, Dietl S, Fresco-Cala B, Dinc M, Groß R, Sobek H, Münch J, Mizaikoff B (2022) Plastic antibodies mimicking the ACE2 receptor for selective binding of SARS-CoV-2 spike. Adv Mater Interfaces 9(5):2101925. https://doi.org/10.1002/admi.202101925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palladino P, Minunni M, Scarano S (2018) Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing. Biosens Bioelectron 106:93–98. https://doi.org/10.1016/j.bios.2018.01.068

    Article  CAS  PubMed  Google Scholar 

  17. Pirzada M, Sehit E, Altintas Z (2020) Cancer biomarker detection in human serum samples using nanoparticle decorated epitope-mediated hybrid MIP (86–11). Biosens Bioelectron 166:112464. https://doi.org/10.1016/j.bios.2020.112464

    Article  CAS  PubMed  Google Scholar 

  18. Qin YP, Wang HY, He XW, Li WY, Zhang YK (2018) Metal chelation dual-template epitope imprinting polymer via distillation-precipitation polymerization for recognition of porcine serum albumin. Talanta 185:620–627. https://doi.org/10.1016/j.talanta.2018.03.082

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto H, Sunayama H, Kitayama Y, Takano E, Takeuchi T (2019) Site-specific post-imprinting modification of molecularly imprinted polymer nanocavities with a modifiable functional monomer for prostate cancer biomarker recognition (19–31). Sci Technol Adv Mater 20(1):305–312. https://doi.org/10.1080/14686996.2019.1583495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turan E, Zengin A, Suludere Z, Kalkan NO, Tamer U (2022) Construction of a sensitive and selective plasmonic biosensor for prostate specific antigen by combining magnetic molecularly-imprinted polymer and surface-enhanced Raman spectroscopy (22–1). Talanta 237:122926. https://doi.org/10.1016/j.talanta.2021.122926

    Article  CAS  PubMed  Google Scholar 

  21. Drzazgowska J, Schmid B, Sussmuth RD, Altintas Z (2020) Self-assembled monolayer epitope bridges for molecular imprinting and cancer biomarker sensing (68–14). Anal Chem 92(7):4798–4806. https://doi.org/10.1021/acs.analchem.9b03813

    Article  CAS  PubMed  Google Scholar 

  22. Truta LAANA, Sales MGF (2019) Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples (31–26). Sens Actuators, B Chem 287:53–63. https://doi.org/10.1016/j.snb.2019.02.033

    Article  CAS  Google Scholar 

  23. Tang P, Wang Y, Huo J, Lin X (2018) Love wave sensor for prostate-specific membrane antigen detection based on hydrophilic molecularly-imprinted polymer (62–35). Polymers (Basel) 10 (5):563. https://doi.org/10.3390/polym10050563

  24. Selvolini G, Marrazza G (2017) MIP-based sensors: promising new tools for cancer biomarker determination. Sensors (Basel) 17 (4):718. https://doi.org/10.3390/s17040718

  25. Mehmandoust M, Erk N, Karaman C, Karaman O (2022) An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere 291(Pt 1):132807. https://doi.org/10.1016/j.chemosphere.2021.132807

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA (2019) Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol 37(3):294–309. https://doi.org/10.1016/j.tibtech.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  27. Hassan SSM, A HK, Amr AEE, Hashem HM, Bary EMA (2020) Imprinted polymeric beads-based screen-printed potentiometric platforms modified with multi-walled carbon nanotubes (MWCNTs) for selective recognition of fluoxetine. Nanomaterials (Basel) 10 (3):572. https://doi.org/10.3390/nano10030572

  28. Anirudhan TS, Athira VS, Nair SS (2022) Detection of chlorpyrifos based on molecular imprinting with a conducting polythiophene copolymer loaded on multi-walled carbon nanotubes. Food Chem 381:132010. https://doi.org/10.1016/j.foodchem.2021.132010

    Article  CAS  PubMed  Google Scholar 

  29. Vahidifar M, Es’haghi Z, Oghaz NM, Mohammadi AA, Kazemi MS (2022) Multi-template molecularly imprinted polymer hybrid nanoparticles for selective analysis of nonsteroidal anti-inflammatory drugs and analgesics in biological and pharmaceutical samples. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-18308-2

    Article  PubMed  Google Scholar 

  30. Phonklam K, Wannapob R, Sriwimol W, Thavarungkul P, Phairatana T (2020) A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sensors and Actuators B: Chemical 308:127630. https://doi.org/10.1016/j.snb.2019.127630

    Article  CAS  Google Scholar 

  31. Balciunas D, Plausinaitis D, Ratautaite V, Ramanaviciene A, Ramanavicius A (2022) Towards electrochemical surface plasmon resonance sensor based on the molecularly imprinted polypyrrole for glyphosate sensing. Talanta 241:123252. https://doi.org/10.1016/j.talanta.2022.123252

    Article  CAS  PubMed  Google Scholar 

  32. Ratautaite V, Boguzaite R, Brazys E, Ramanaviciene A, Ciplys E, Juozapaitis M, Slibinskas R, Bechelany M, Ramanavicius A (2022) Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 403:139581. https://doi.org/10.1016/j.electacta.2021.139581

    Article  CAS  PubMed  Google Scholar 

  33. Wang M, Ceto X, Del Valle M (2022) A novel electronic tongue using electropolymerized molecularly imprinted polymers for the simultaneous determination of active pharmaceutical ingredients. Biosens Bioelectron 198:113807. https://doi.org/10.1016/j.bios.2021.113807

    Article  CAS  PubMed  Google Scholar 

  34. Zhong M, Teng Y, Pang S, Yan L, Kan X (2015) Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor. Biosens Bioelectron 64:212–218. https://doi.org/10.1016/j.bios.2014.08.083

    Article  CAS  PubMed  Google Scholar 

  35. Jesadabundit W, Jampasa S, Patarakul K, Siangproh W, Chailapakul O (2021) Enzyme-free impedimetric biosensor-based molecularly imprinted polymer for selective determination of L-hydroxyproline. Biosens Bioelectron 191:113387. https://doi.org/10.1016/j.bios.2021.113387

    Article  CAS  PubMed  Google Scholar 

  36. Aytaç S, Kuralay F, Boyacı İH, Unaleroglu C (2011) A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor. Sens Actuators, B Chem 160(1):405–411. https://doi.org/10.1016/j.snb.2011.07.069

    Article  CAS  Google Scholar 

  37. Mao H, Liu M, Cao Z, Ji C, Sun Y, Liu D, Wu S, Zhang Y, Song X-M (2017) Poly(4-vinylphenylboronic acid) functionalized polypyrrole/graphene oxide nanosheets for simultaneous electrochemical determination of catechol and hydroquinone. Appl Surf Sci 420:594–605. https://doi.org/10.1016/j.apsusc.2017.05.188

    Article  CAS  Google Scholar 

  38. Qi S, Saad Al-mashriqi H, Salah A, Zhai H (2022) Glutathione capped gold nanoclusters-based fluorescence probe for highly sensitive and selective detection of transferrin in serum. Microchemical Journal 175:107163. https://doi.org/10.1016/j.microc.2021.107163

    Article  CAS  Google Scholar 

  39. Das A, Choi N, Moon JI, Choo J (2020) Determination of total iron-binding capacity of transferrin using metal organic framework-based surface-enhanced Raman scattering spectroscopy. J Raman Spectrosc 52(2):506–515. https://doi.org/10.1002/jrs.6002

    Article  CAS  Google Scholar 

  40. Rodriguez-Hidalgo G, Sierra T, Dortez S, Marcos A, Ambrosio E, Crevillen AG, Escarpa A (2022) Transferrin analysis in wistar rats plasma: Towards an electrochemical point-of-care approach for the screening of alcohol abuse. Microchemical Journal 181:107738. https://doi.org/10.1016/j.microc.2022.107738

    Article  CAS  Google Scholar 

  41. Lv Y, Qin Y, Svec F, Tan T (2016) Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 80:433–441. https://doi.org/10.1016/j.bios.2016.01.092

    Article  CAS  PubMed  Google Scholar 

  42. Srivastava J, Kushwaha A, Srivastava M, Srivastava A, Singh M (2019) Glycoprotein imprinted RGO-starch nanocomposite modified EQCM sensor for sensitive and specific detection of transferrin. J Electroanal Chem 835:169–177. https://doi.org/10.1016/j.jelechem.2019.01.033

    Article  CAS  Google Scholar 

  43. Miao Y, Sun X, Lv J, Yan G (2019) Phosphorescent mesoporous surface imprinting microspheres: preparation and application for transferrin recognition from biological fluids. ACS Appl Mater Interfaces 11(2):2264–2272. https://doi.org/10.1021/acsami.8b17772

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (No.81973451), Fundamental and Frontier Research Fund of Chongqing (No. cstc2018jcyjAX0661, No.cstc2019jsyj-yzysbAX0020), Graduate Research and Innovation Project of Chongqing, 2022 (CYB22041), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJZD-K201800103), Fundamental Research Funds for the Central Universities (No. 2019CDYGYB027, 2022CDJXY-003), Graduate Research and Innovation Foundation of Chongqing (No. CYS18033), Venture & Innovation Support Program for Chongqing Overseas Returnees, and Tang Foundations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-Di Zhou, Ling Luo or Qi-Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 951 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JY., Xu, HX., Li, Q. et al. Specific capture and determination of glycoprotein using a hybrid epitopes and monomers-mediated molecular-imprinted polymer enzyme-free electrochemical biosensor. Microchim Acta 190, 118 (2023). https://doi.org/10.1007/s00604-023-05651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05651-z

Keywords

Navigation