Skip to main content
Log in

A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A promising sensing platform based on polyoxometalate-based metal–organic framework (POMOF) was established for sensitive electrochemical detection of xanthine (XA). In the unique structure of POMOF, the Dawson polyoxoanions P2W18 were encapsulated into 3D open copper-mixed ligand nanotube framework Cu-MOF, in which the cavity of the metal–organic framework provides a specific shelter to prevent the aggregation and loss of polyoxometalate in electrocatalytic reactions; meanwhile, unsaturated Cu(II) active sites of Cu-MOF can also serve as electrocatalytic active center. The POMOF-based sensor (CuMOFP2W18/XC-72R) was fabricated by using acetylene black (XC-72R) as a support material to enhance the conductivity of POMOF. The performances of the POMOF-based sensor were studied by using different electrochemical testing methods. The composite displayed remarkable electrocatalytic activity for the oxidation of XA due to the synergistic effect of polyoxometalate (POM) and metal–organic framework (MOF). The electrochemical sensor demonstrated a wide linear range (0.5 μM–240 μM), low detection limit (0.26 μM), and excellent selectivity for detecting XA. Furthermore, the composite further demonstrated excellent reproducibility and great stability. More importantly, the proposed sensor was utilized to detect XA in real samples, which may provide a new way for early disease diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bai ZK, Zhang YT, Hong LSI, Luo HX (2020) A flexible electrochemical sensor based on L-arginine modified chemical vapor deposition graphene platform electrode for selective determination of xanthine. Chin J Anal Chem 48:1149–1159

    Article  CAS  Google Scholar 

  2. Kalimuthu P, Leimkühler S, Bernhardt PV (2012) Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine. Anal Chem 84:10359–10365

    Article  CAS  Google Scholar 

  3. Pu WD, Zhao HW, Wu LP, Zhao XY (2014) A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim Acta 182:395–400

    Article  Google Scholar 

  4. Sahyar BY, Kaplan M, Ozsoz M, Celik E, Otles S (2019) Electrochemical xanthine detection by enzymatic method based on ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochem Bioenerg 130:107327

    Article  CAS  Google Scholar 

  5. Wasi AM, Dey B, Sarkhel G, Yang DJ (2022) A. Choudhury, Sea-urchin-like Cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem 920:116646

    Article  Google Scholar 

  6. Boulieu R, Bory C, Baltassat P (1982) High-performance liquid chromatographic determination of hypoxanthine and xanthine in biological fluids. J Chromatogr 233:131–140

    Article  CAS  Google Scholar 

  7. Kock R, Delvoux B, Greiling H (1993) A high-performance liquid chromatographic method for the determination of hypoxanthine, xanthine, uric acid and allantoin in serum. Eur J Clin Chem Clin Biochem 31:303–310

    CAS  Google Scholar 

  8. Pagliarussi RS, Freitas LAP, Bastos JK (2002) A quantitative method for the analysis of xanthine alkaloids in Paullinia cupana (guarana) by capillary column gas chromatography. J Sep Sci 25:371–374

    Article  CAS  Google Scholar 

  9. Shan D, Wang YN, Zhu MJ, Xue HG, Cosnier S, Wang CY (2009) Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosens Bioelectron 24:1171–1176

    Article  CAS  Google Scholar 

  10. Rafiee M, Khalafi L (2010) The electrochemical study of catecholamine reactions in the presence of nitrite ion under mild acidic conditions. Electrochim Acta 55:1809–1813

    Article  CAS  Google Scholar 

  11. Zhu D, Chu MY, Xin JJ, Wang XM, O’Halloran KP, Ma HY, Pang HJ, Tan LC, Yang GX (2021) Hierarchical and hollow boron/nitrogen co-doped yolk-shell mesoporous carbon nanospheres attached to reduced graphene oxide with high sensing performance for the simultaneous detection of xanthine and guanosine. Sens Actuators B 343:130068

    Article  CAS  Google Scholar 

  12. Roostaee M, Sheikhshoaie I (2022) Fabrication of a sensitive sensor for determination of xanthine in the presence of uric acid and ascorbic acid by modifying a carbon paste sensor with Fe3O4@Au core–shell and an ionic liquid. J Food Meas Charact 16:731–739

    Article  Google Scholar 

  13. Zhang L, Li SB, Xin JJ, Ma HY, Pang HJ, Tan LC, Wang XM (2018) A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Microchim Acta 186:9

    Article  Google Scholar 

  14. Lu BR, Li SB, Pan J, Zhang L, Xin JJ, Chen Y, Tan XG (2020) pH-controlled assembly of five new organophosphorus Strandberg-type cluster-based coordination polymers for enhanced electrochemical capacitor performance. Inorg Chem 59:1702–1714

    Article  CAS  Google Scholar 

  15. Zhao TT, Cui LP, Yu K, Lv JH, Ma YJ, Yang AS, Zhou BB (2022) Porous P6Mo18O73 type poly(oxometalate) metal-organic frameworks for improved pseudocapacitance and electrochemical sensing performance. ACS Appl Mater Interfaces 14:30099–30111

    Article  CAS  Google Scholar 

  16. Pan J, Li SB, Li FB, Yu TT, Liu YP, Zhang L, Ma L, Sun M, Tian XF (2021) The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf A 609:125650

    Article  CAS  Google Scholar 

  17. Li SB, Tan XG, Yue M, Zhang L, Chai DF, Wang WD, Pan H, Fan LL, Zhao CY (2020) A polyoxometalate-encapsulated nanocage cluster organic framework built from Cu4P2 units and its efficient bifunctional electrochemical performance. Chem Commun 56:15177–15180

    Article  CAS  Google Scholar 

  18. Zhang L, Li SB, Gomez-Garcia CJ, Ma HY, Zhang CJ, Pang HJ, Li BN (2018) Two novel polyoxometalate-encapsulated metal-organic nanotube frameworks as stable and highly efficient electrocatalysts for hydrogen evolution reaction. ACS Appl Mater Interfaces 10:31498–31504

    Article  CAS  Google Scholar 

  19. Zhang Z, Liu YW, Tian HR, Li XH, Liu SM, Lu Y, Sun ZX, Liu T, Liu SX (2020) Polyoxometalate-based metal-organic framework fractal crystals. Matter 2:250–260

    Article  Google Scholar 

  20. Cui LP, Yu K, Lv JH, Guo CH, Zhou BB (2020) 3D POMOF based on AsW12 cluster and Ag-MOF with interpenetrating channels for large-capacity aqueous asymmetric supercapacitors and highly selective biosensors detecting hydrogen peroxide. J Mater Chem 8:22918–22928

    Article  CAS  Google Scholar 

  21. Sha JQ, Peng J, Lan YQ, Su ZM, Pang HJ, Tian AX, Zhang PP, Zhu M (2008) pH-dependent assembly of hybrids based on Wells-Dawson POM/Ag chemistry. Inorg Chem 47:5145–5153

    Article  CAS  Google Scholar 

  22. Pan J, Li SB, Zhang L, Yu TT, Li FB, Zhang WZ, Wang JX, Zhang DQ, Yu Y, Li X (2022) Reduced graphene oxide/Ni foam supported ZIF-67 derived CuCo2S4@CoS2 core-shell heterostructure for boosted electrochemical energy storage. J Energy Storage 47:103550

    Article  Google Scholar 

  23. Liu K, Song Y, Chen SW (2014) Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media. J Power Sources 268:469–475

    Article  CAS  Google Scholar 

  24. Lu CH, Qi LM, Yang JH, Wang XY, Zhang DY, Xie JL, Ma JM (2005) One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route. Adv Mater 17:2562–2567

    Article  CAS  Google Scholar 

  25. Li N, Wang ZY, Zhao KK, Shi ZJ, Xu SK, Gu ZN (2010) Graphene-CuO nanocomposite. J Nanosci Nanotechnol 10:6690–6693

    Article  CAS  Google Scholar 

  26. Li JP, Wu D, Wang CL, Liu D, Chen WL, Wang XL, Wang EB (2020) Interfacial self-assembly engineering for constructing a 2D flexible superlattice polyoxometalate/rGo heterojunction for high-performance photovoltaic devices. Dalton Trans 49:3766–3774

    Article  CAS  Google Scholar 

  27. Wang ML, Yin D, Cao YD, Dong XY, Gao GG, Hu X, Jin C, Fan LL, Yu J, Liu H (2022) Surface modification of hollow capsule by Dawson-type polyoxometalate as sulfur hosts for ultralong-life lithium-sulfur batteries. Chin Chem Lett 33:4350–4356

    Article  CAS  Google Scholar 

  28. Yang XY, Li MT, Sheng N, Li JS, Liu GD, Sha JQ, Jiang J (2018) Structure and libs anode material application of novel wells–Dawson polyoxometalate-based metal organic frameworks with different helical channels. Cryst Growth Des 18:5564–5572

    Article  CAS  Google Scholar 

  29. Bao YY, Li ZP, Wang HY, Li N, Pan QL, Li J, Zhao JG, Yang RH, Feng F (2020) Electrochemical reduction-assisted in situ fabrication of a graphene/Au nanoparticles@polyoxometalate nanohybrid film: high-performance electrochemical detection for uric acid. Langmuir 36:7365–7374

    Article  CAS  Google Scholar 

  30. Torres CDA, AmayaRS RJS, Vargas A, Escobar D, Restrepo E (2021) Incorporation of P5+ and P3− from phosphate precursor in TiO2: P coatings produced by PEO: XPS and DFT study. Surf Coat Technol 421:127437

    Article  Google Scholar 

  31. Shah WA, Ibrahim S, Abbas S, Naureen L, Batool M, Imran M, Nadeem MA (2021) Nickel containing polyoxometalates incorporated in two different metal-organic frameworks for hydrogen evolution reaction. J Environ Chem Eng 9:106004

    Article  CAS  Google Scholar 

  32. Jin DF, Gao J, Hou ZY, Guo Y, Lu XY, Zhu YH, Zheng XM (2009) Microwave assisted in situ synthesis of USY-encapsulated heteropoly acid (HPW-USY) catalysts. Appl Catal A 352:259–264

    Article  CAS  Google Scholar 

  33. Acheson JG, Robinson L, McKillop S, Wilson S, McIvor MJ, Meenan BJ, Boyd AR (2021) TOFSIMS and XPS characterisation of strontium in amorphous calcium phosphate sputter deposited coatings. Mater Charact 171:110739

    Article  CAS  Google Scholar 

  34. Shahzad F, Zaidi SA, Koo CM (2017) Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sens Actuators B 241:716–724

    Article  CAS  Google Scholar 

  35. Devnani H, Ansari S, Satsangee SP, Jain R (2017) ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater Today Chem 4:17–25

    Article  Google Scholar 

  36. Ansari S, Ansari MS, Devnani H, Satsangee SP, Jain R (2018) CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug. Sens Actuators B 273:1226–1236

    Article  CAS  Google Scholar 

  37. Ansari S, Ansari MS, Satsangee SP, Jain R (2019) WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal Chim Acta 1046:99–109

    Article  CAS  Google Scholar 

  38. Ansari S, Ansari MS, Satsangee SP, Alam MG, Jain R (2022) Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. J Nanostructure Chem 1–15

  39. Ansari S, Ansari MS, Satsangee SP, Jain R (2021) A. Choudhury, Bi2O3/ZnO nanocomposite: synthesis, characterizations and its application in electrochemical detection of Balofloxacin as an anti-biotic drug. J Pharm Anal 11:57–67

    Article  Google Scholar 

  40. Yang WH, Guo H, Fan T, Zhao X, Zhang LW, Guan QX, Wu N, Cao YJ, Wu Y (2021) MoS2/Ni(OH)2 composites derived from in situ grown Ni-MOF coating MoS2 as electrode materials for supercapacitor and electrochemical sensor. Collid Surface A 625:123178

    Google Scholar 

  41. Zhang W, Ge CY, Jin L, Yoon SJ, Kim W, Xu GR, Jang H (2021) Nickel nanoparticles incorporated Co, N co-doped carbon polyhedron derived from core-shell ZIF-8@ZIF-67 for electrochemical sensing of nitrite. J Electroanal Chem 887:115163

    Article  CAS  Google Scholar 

  42. Chen SS, Zhang M, Zhang H, Yan X, Xie J, Qi JW, Sun XY, Li JS (2021) Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. Environ Res 201:11500

    Article  Google Scholar 

  43. Yang Hu, Zhang L, Zhao PC, Wang CX, Fei JJ, Xie YX (2022) Ultrasensitive luteolin electrochemical sensor based on zeolitic imidazolate frameworks-derived cobalt trioxide @ nitrogen doped carbon nanotube/amino-functionalized graphene quantum dots composites modified glass carbon electrode. Sens Actuators B 51:130938

    Google Scholar 

  44. Wu CY, Wu XC, Hou F, Wu L, Liu GX (2022) An ultrasensitive electrochemical aptasensor based on Pd@PCN-222 as a signal probe coupled with exonuclease III-assisted cycling amplification for the detection of ochratoxin A. Food Control 139:109066

    Article  CAS  Google Scholar 

  45. Md NI, Robert BC (2020) Electrochemical sensors. In: Sylvain L (ed) Bioengineering innovative solutions for cancer. Elsevier, London, pp 47–71

  46. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

  47. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–238

    Article  CAS  Google Scholar 

  48. Li YC, Jiang YY, Song YY, Li YH, Li SX (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185:382

    Article  Google Scholar 

  49. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185:1–10

    Article  CAS  Google Scholar 

  50. Liu XF, Ou X, Lu QY, Zhang JJ, Chen SH, Wei SP (2014) Electrochemical sensor based on overoxidized dopamine polymer and 3,4,9,10-perylenetetracarboxylic acid for simultaneous determination of ascorbic acid, dopamine, uric acid, xanthine and hypoxanthine. RSC Adv 4:42632–42637

    Article  CAS  Google Scholar 

  51. Cheng J, Li YF, Zhong J, Lu ZW, Wang GT, Sun MM, Jiang YY, Zou P, Wang XX, Zhao QB, Wang YY, Rao HB (2020) Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem Eng J 398:125664

    Article  CAS  Google Scholar 

  52. Zhu D, Zhen QF, Xin JJ, Ma HY, Pang HJ, Tan LC, Wang XM (2021) In situ hierarchical encapsulation of bimetallic selenides into honeycomb-like nitrogen doped porous carbon nanosheets for highly sensitive and selective guanosine detection. J Colloid Interface Sci 598:181–192

    Article  CAS  Google Scholar 

  53. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  54. Sha R, Vishnu N, Badhulika S (2018) Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Microchim Acta 185:399

    Article  Google Scholar 

  55. Mu SL, Shi QF (2013) Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film. Biosens Bioelectron 47:429–435

    Article  CAS  Google Scholar 

  56. Zhu D, Ma HY, Pang HJ, Tan LC, Jiao J, Chen T (2018) Facile fabrication of a non-enzymatic naocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 266:54–65

    Article  CAS  Google Scholar 

  57. Wang M, Zheng ZX, Liu JJ, Wang CM (2017) Pt-Pd bimetallic nanoparticles decorated nanoporous graphene as a catalytic amplification platform for electrochemical detection of xanthine. Electroanalysis 29:1258–1266

    Article  CAS  Google Scholar 

  58. Yin DD, Liu J, Bo XJ, Li M, Guo LP (2017) Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications. Electrochim Acta 247:41–49

    Article  CAS  Google Scholar 

  59. Kumar AS, Swetha P (2010) Ru(DMSO)4Cl2 nano-aggregated nafion membrane modified electrode for simultaneous electrochemical detection of hypoxanthine, xanthine and uric acid. J Electroanal Chem 642:135–142

    Article  CAS  Google Scholar 

  60. Xu GB, Cui JM, Liu H (2015) Highly selective detection of cellular guanine and xanthine by polyoxometalate modified 3D graphene foam. Electrochim Acta 168:32–40

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Heilongjiang Province (LH2021B029), the Fundamental Research Fund of Heilongjiang Provincial University (145109118), and the Major Research Plan National Natural Science Foundation of China (Grant 92061102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobin Li or Huiyuan Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, C., Li, F. et al. A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine. Microchim Acta 190, 24 (2023). https://doi.org/10.1007/s00604-022-05601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05601-1

Keywords

Navigation