Skip to main content
Log in

Fluorescent nanodiamond for nanotheranostic applications

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The interest in application of nanodiamonds as nanotheranostics is increasing rapidly over recent years. The combination of properties, such as high refractive index, low toxicity, inertness, high carrier capacity and rich surface functionalities, as well as unique magneto-optical properties of the nitrogen-vacancy centre, renders fluorescent nanodiamonds superior to other nanomaterials as nanotheranostics. In this review, the current state of research on the applications of nanodiamonds as theranostics where they have been utilised in combination with both diagnostics/imaging and therapy simultaneously is discussed. Firstly, a brief introduction to the current knowledge about the synthesis and properties of nitrogen-vacancy centre in nanodiamonds is given. Then, the underlying principles that are responsible for the magneto-optical properties of nitrogen-vacancy centre are explained. The majority of theranostic applications of nanodiamonds rely on the judicious engineering of their surface with bioactive molecules. In the following section, methods of engineering the surface of nanodiamonds while preserving their colloidal stability and their implication on in vitro and in vivo biocompatibility are described. Subsequently, the recent developments and applications of nanodiamond conjugates as photo-theranostics and non-targeted and targeted theranostics are critically discussed. Co-delivery of specifically tailored nanodiamonds with both diagnostic/imaging and therapeutic features can considerably contribute towards nanotheranostics-based personalized medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Bull. Chem. Soc. Jpn. 2021, 94, 2302 [178]

Fig. 4
Fig. 5

Reproduced with permission from Adv. NanoBiomed. Res. 2021, 1, 2000101 [212]

Similar content being viewed by others

References

  1. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903. https://doi.org/10.1021/bc200151q

    Article  CAS  Google Scholar 

  2. Funkhouser J (2002) Reintroducing pharma: theranostic revolution. Curr Drug Discov 2:17–19

  3. Kim TH, Lee S, Chen X (2013) Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 13:257–269. https://doi.org/10.1586/erm.13.15

    Article  CAS  Google Scholar 

  4. Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55:1919–1922. https://doi.org/10.2967/jnumed.114.146019

    Article  CAS  Google Scholar 

  5. Zhang X, Yin J, Kang C et al (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett 198:237–243. https://doi.org/10.1016/j.toxlet.2010.07.001

    Article  CAS  Google Scholar 

  6. Tzeng Y-K, Faklaris O, Chang B-M et al (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed 50:2262–2265. https://doi.org/10.1002/anie.201007215

    Article  CAS  Google Scholar 

  7. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 65:83–105. https://doi.org/10.1146/annurev-physchem-040513-103659

    Article  CAS  Google Scholar 

  8. Gruber A, Dräbenstedt A, Tietz C et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014. https://doi.org/10.1126/science.276.5321.2012

    Article  CAS  Google Scholar 

  9. Zhang T, Pramanik G, Zhang K et al (2021) Toward quantitative bio-sensing with nitrogen–vacancy center in diamond. ACS Sens 6:2077–2107. https://doi.org/10.1021/acssensors.1c00415

    Article  CAS  Google Scholar 

  10. Wu Y, Jelezko F, Plenio MB, Weil T (2016) Diamond quantum devices in biology. Angew Chem Int Ed 55:6586–6598. https://doi.org/10.1002/anie.201506556

    Article  CAS  Google Scholar 

  11. Chipaux M, van der Laan KJ, Hemelaar SR et al (2018) Nanodiamonds and their applications in cells. Small 14:1704263. https://doi.org/10.1002/smll.201704263

    Article  CAS  Google Scholar 

  12. van der Laan K, Hasani M, Zheng T, Schirhagl R (2018) Nanodiamonds for in vivo applications. Small 14:1703838. https://doi.org/10.1002/smll.201703838

    Article  CAS  Google Scholar 

  13. Hsiao WW-W, Hui YY, Tsai P-C, Chang H-C (2016) Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res 49:400–407. https://doi.org/10.1021/acs.accounts.5b00484

    Article  CAS  Google Scholar 

  14. Boretti A, Rosa L, Blackledge J, Castelletto S (2019) Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications. Beilstein J Nanotechnol 10:2128–2151. https://doi.org/10.3762/bjnano.10.207

    Article  CAS  Google Scholar 

  15. Torelli MD, Nunn NA, Shenderova OA (2019) A perspective on fluorescent nanodiamond bioimaging. Small 15:1902151. https://doi.org/10.1002/smll.201902151

    Article  CAS  Google Scholar 

  16. Nagl A, Hemelaar SR, Schirhagl R (2015) Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. Anal Bioanal Chem 407:7521–7536. https://doi.org/10.1007/s00216-015-8849-1

    Article  CAS  Google Scholar 

  17. Hsiao WW-W, Lin H-H, Chang H-C (2019) Diamond nanoparticles for drug delivery and monitoring. In: Kranz C (ed) Carbon-based nanosensor technology. Springer International Publishing, Cham, pp 119–140

    Google Scholar 

  18. Aharonovich I, Neu E (2014) Diamond nanophotonics. Adv. Opt Mater 2:911–928. https://doi.org/10.1002/adom.201400189

    Article  CAS  Google Scholar 

  19. Bradac C, Gao W, Forneris J et al (2019) Quantum nanophotonics with group IV defects in diamond. Nat Commun 10:5625. https://doi.org/10.1038/s41467-019-13332-w

    Article  CAS  Google Scholar 

  20. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23. https://doi.org/10.1038/nnano.2011.209

    Article  CAS  Google Scholar 

  21. Dolmatov VY (2007) Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev 76:339–360. https://doi.org/10.1070/RC2007v076n04ABEH003643

    Article  CAS  Google Scholar 

  22. Vereschagin AL (2005) Properties of detonation nanodiamonds. Barnaul State Technical University

  23. Aleksenskiy A, Baidakova M, Osipov V, Vul’ A (2010) The fundamental properties and characteristics of nanodiamonds. In: Ho D (ed) Nanodiamonds: applications in biology and nanoscale medicine. Springer, US, Boston, MA, pp 55–77

    Chapter  Google Scholar 

  24. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev 70:607–626. https://doi.org/10.1070/RC2001v070n07ABEH000665

    Article  CAS  Google Scholar 

  25. Dolmatov VYu, Veretennikova MV, Marchukov VA, Sushchev VG (2004) Currently available methods of industrial nanodiamond synthesis. Phys Solid State 46:611–615. https://doi.org/10.1134/1.1711434

    Article  CAS  Google Scholar 

  26. Vul AY Detonation nanodiamonds: technology, properties and applications. Detonation Nanodiamonds 9

  27. Osswald S, Yushin G, Mochalin V et al (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642. https://doi.org/10.1021/ja063303n

    Article  CAS  Google Scholar 

  28. Wentorf RH (1971) Diamond growth rates. J Phys Chem 75:1833–1837. https://doi.org/10.1021/j100681a013

    Article  CAS  Google Scholar 

  29. Bundy FP (1963) Direct conversion of graphite to diamond in static pressure apparatus. J Chem Phys 38:631–643. https://doi.org/10.1063/1.1733716

    Article  CAS  Google Scholar 

  30. Liang ZZ, Jia X, Ma HA et al (2005) Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN3 as dopant in metal-carbon system. Diam Relat Mater 14:1932–1935. https://doi.org/10.1016/j.diamond.2005.06.041

    Article  CAS  Google Scholar 

  31. Recent Advances in Understanding the Geology of Diamonds | Gems & Gemology. http://www.gia.edu/sites/Satellitec=Page&cid=1495237980882&childpagename=GIA/Page/GGArticleDetail&pagename=GIA/Wrapper&WRAPPERPAGE=GIA/Wrapper

  32. Palyanov YN, Kupriyanov IN, Khokhryakov AF, Ralchenko VG (2015) 17 - Crystal growth of diamond. In: Rudolph P (ed) Handbook of crystal growth, 2nd edn. Elsevier, Boston, pp 671–713

    Chapter  Google Scholar 

  33. Stehlik S, Varga M, Ledinsky M et al (2015) Size and purity control of HPHT Nanodiamonds down to 1 nm. J Phys Chem C 119:27708–27720. https://doi.org/10.1021/acs.jpcc.5b05259

    Article  CAS  Google Scholar 

  34. Boudou J-P, Curmi PA, Jelezko F et al (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602. https://doi.org/10.1088/0957-4484/20/23/235602

    Article  CAS  Google Scholar 

  35. Lin CR, Wei DH, Dao MKB et al (2013) Nanocrystalline diamond particles prepared by high-energy ball milling method. Appl Mech Mater 284–287:168–172. https://doi.org/10.4028/www.scientific.net/AMM.284-287.168

    Article  CAS  Google Scholar 

  36. Perevedentseva E, Lin Y-C, Cheng C-L (2021) A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 18:369–382. https://doi.org/10.1080/17425247.2021.1832988

    Article  CAS  Google Scholar 

  37. Mitev DP, Townsend AT, Paull B, Nesterenko PN (2014) Screening of elemental impurities in commercial detonation nanodiamond using sector field inductively coupled plasma-mass spectrometry. J Mater Sci 49:3573–3591. https://doi.org/10.1007/s10853-014-8036-3

    Article  CAS  Google Scholar 

  38. Dolmatov VY, Ozerin AN, Kulakova II et al (2020) Detonation nanodiamonds: new aspects in the theory and practice of synthesis, properties and applications. Russ Chem Rev 89:1428. https://doi.org/10.1070/RCR4924

    Article  CAS  Google Scholar 

  39. Panich AM, Shames AI, Zousman B, Levinson O (2012) Magnetic resonance study of nanodiamonds prepared by laser-assisted technique. Diam Relat Mater 23:150–153. https://doi.org/10.1016/j.diamond.2011.12.047

    Article  CAS  Google Scholar 

  40. Kumar A, Ann Lin P, Xue A, et al (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4https://doi.org/10.1038/ncomms3618

  41. Shenderova OA, Vlasov II, Turner S et al (2011) Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J Phys Chem C 115:14014–14024. https://doi.org/10.1021/jp202057q

    Article  CAS  Google Scholar 

  42. Neu E, Arend C, Gross E et al (2011) Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl Phys Lett 98:243107. https://doi.org/10.1063/1.3599608

    Article  CAS  Google Scholar 

  43. Zaitsev AM (2000) Vibronic spectra of impurity-related optical centers in diamond. Phys Rev B 61:12909–12922. https://doi.org/10.1103/PhysRevB.61.12909

    Article  CAS  Google Scholar 

  44. Aharonovich I, Castelletto S, Simpson DA et al (2011) Diamond-based single-photon emitters. Rep Prog Phys 74:076501. https://doi.org/10.1088/0034-4885/74/7/076501

    Article  CAS  Google Scholar 

  45. Collins AT, Thomaz MF, Jorge MIB (1983) Luminescence decay time of the 1.945 eV centre in type Ib diamond. J Phys C Solid State Phys 16:2177–2181. https://doi.org/10.1088/0022-3719/16/11/020

    Article  CAS  Google Scholar 

  46. Balasubramanian G, Lazariev A, Arumugam SR, Duan D (2014) Nitrogen-vacancy color center in diamond — emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 20:69–77. https://doi.org/10.1016/j.cbpa.2014.04.014

    Article  CAS  Google Scholar 

  47. Jelezko F, Gaebel T, Popa I et al (2004) Observation of coherent oscillations in a single electron spin. Phys Rev Lett 92:076401. https://doi.org/10.1103/PhysRevLett.92.076401

    Article  CAS  Google Scholar 

  48. Badea I, Kaur R (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 8:203–220. https://doi.org/10.2147/IJN.S37348

    Article  CAS  Google Scholar 

  49. Havlik J, Petrakova V, Rehor I et al (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211. https://doi.org/10.1039/C2NR32778C

    Article  CAS  Google Scholar 

  50. Davies G, Lawson SC, Collins AT et al (1992) Vacancy-related centers in diamond. Phys Rev B 46:13157–13170. https://doi.org/10.1103/PhysRevB.46.13157

    Article  CAS  Google Scholar 

  51. Pezzagna S, Naydenov B, Jelezko F et al (2010) Creation efficiency of nitrogen-vacancy centres in diamond. New J Phys 12:065017. https://doi.org/10.1088/1367-2630/12/6/065017

    Article  CAS  Google Scholar 

  52. Haruyama M, Onoda S, Higuchi T et al (2019) Triple nitrogen-vacancy centre fabrication by C 5 N 4 H n ion implantation. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-10529-x

    Article  CAS  Google Scholar 

  53. Gaebel T, Domhan M, Popa I et al (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413. https://doi.org/10.1038/nphys318

    Article  CAS  Google Scholar 

  54. Yamamoto T, Müller C, McGuinness LP et al (2013) Strongly coupled diamond spin qubits by molecular nitrogen implantation. Phys Rev B 88:201201. https://doi.org/10.1103/PhysRevB.88.201201

    Article  CAS  Google Scholar 

  55. Spinicelli P, Dréau A, Rondin L et al (2011) Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN - molecules through nanoapertures. New J Phys 13:025014. https://doi.org/10.1088/1367-2630/13/2/025014

    Article  CAS  Google Scholar 

  56. Meijer J, Burchard B, Domhan M et al (2005) Generation of single color centers by focused nitrogen implantation. Appl Phys Lett 87:261909. https://doi.org/10.1063/1.2103389

    Article  CAS  Google Scholar 

  57. Naydenov B, Reinhard F, Lämmle A et al (2010) Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl Phys Lett 97:242511. https://doi.org/10.1063/1.3527975

    Article  CAS  Google Scholar 

  58. Faklaris O, Botsoa J, Sauvage T et al (2010) Photoluminescent nanodiamonds: comparison of the photoluminescence saturation properties of the NV color center and a cyanine dye at the single emitter level, and study of the color center concentration under different preparation conditions. Diam Relat Mater 19:988–995. https://doi.org/10.1016/j.diamond.2010.03.002

    Article  CAS  Google Scholar 

  59. Stursa J, Havlik J, Petrakova V et al (2016) Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon 96:812–818. https://doi.org/10.1016/j.carbon.2015.09.111

    Article  CAS  Google Scholar 

  60. Mochalin V, Osswald S, Gogotsi Y (2009) Contribution of functional groups to the raman spectrum of nanodiamond powders. Chem Mater 21:273–279. https://doi.org/10.1021/cm802057q

    Article  CAS  Google Scholar 

  61. Neburkova J, Vavra J, Cigler P (2017) Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opin Solid State Mater Sci 21:43–53. https://doi.org/10.1016/j.cossms.2016.05.008

    Article  CAS  Google Scholar 

  62. Rondin L, Dantelle G, Slablab A et al (2010) Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys Rev B 82:115449. https://doi.org/10.1103/PhysRevB.82.115449

    Article  CAS  Google Scholar 

  63. Cheng J, He J, Li C, Yang Y (2008) Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem Mater 20:4224–4230. https://doi.org/10.1021/cm800357g

    Article  CAS  Google Scholar 

  64. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74. https://doi.org/10.1080/10408430902831987

    Article  CAS  Google Scholar 

  65. Shenderova O, Petrov I, Walsh J et al (2006) Modification of detonation nanodiamonds by heat treatment in air. Diam Relat Mater 15:1799–1803. https://doi.org/10.1016/j.diamond.2006.08.032

    Article  CAS  Google Scholar 

  66. Wolcott A, Schiros T, Trusheim ME et al (2014) Surface structure of aerobically oxidized diamond nanocrystals. J Phys Chem C 118:26695–26702. https://doi.org/10.1021/jp506992c

    Article  CAS  Google Scholar 

  67. Ackermann J, Krueger A (2019) Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale 11:8012–8019. https://doi.org/10.1039/C9NR01716J

    Article  CAS  Google Scholar 

  68. Turner S, Lebedev OI, Shenderova O et al (2009) Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv Funct Mater 19:2116–2124. https://doi.org/10.1002/adfm.200801872

    Article  CAS  Google Scholar 

  69. Shenoy G, Ettedgui J, Mushti C et al (2022) General method to increase carboxylic acid content on nanodiamonds. Molecules 27:736. https://doi.org/10.3390/molecules27030736

    Article  CAS  Google Scholar 

  70. Comet M, Pichot V, Siegert B et al (2010) Detonation nanodiamonds for doping Kevlar. J Nanosci Nanotechnol 10:4286–4292. https://doi.org/10.1166/jnn.2010.2186

    Article  CAS  Google Scholar 

  71. Krüger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16:2322–2328. https://doi.org/10.1039/B601325B

    Article  Google Scholar 

  72. Zhao F, Liu R, Yu X et al (2015) Carbon fiber grafted with nanodiamond: preparation and characterization. J Nanosci Nanotechnol 15:5807–5815. https://doi.org/10.1166/jnn.2015.10199

    Article  CAS  Google Scholar 

  73. Zheng W-W, Hsieh Y-H, Chiu Y-C et al (2009) Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J Mater Chem 19:8432. https://doi.org/10.1039/b904302k

    Article  CAS  Google Scholar 

  74. Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906. https://doi.org/10.1002/adfm.201102670

    Article  CAS  Google Scholar 

  75. Sotowa K-I, Amamoto T, Sobana A et al (2004) Effect of treatment temperature on the amination of chlorinated diamond. Diam Relat Mater 13:145–150. https://doi.org/10.1016/j.diamond.2003.10.029

    Article  CAS  Google Scholar 

  76. Jarre G, Heyer S, Memmel E et al (2014) Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein J Org Chem 10:2729–2737. https://doi.org/10.3762/bjoc.10.288

    Article  CAS  Google Scholar 

  77. Charrier G, Aureau D, Gonçalves A-M et al (2013) Gold nanoparticles immobilization: evidence of amination of diamond surfaces in liquid ammonia. Diam Relat Mater 32:36–42. https://doi.org/10.1016/j.diamond.2012.11.014

    Article  CAS  Google Scholar 

  78. Pichot V, Muller O, Seve A et al (2017) Optical properties of functionalized nanodiamonds. Sci Rep 7:14086. https://doi.org/10.1038/s41598-017-14553-z

    Article  CAS  Google Scholar 

  79. Ashek-I-Ahmed GL, Mandal S et al (2019) Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega 4:16715–16723. https://doi.org/10.1021/acsomega.9b00776

    Article  CAS  Google Scholar 

  80. Hens SC, Cunningham G, Tyler T et al (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17:1858–1866. https://doi.org/10.1016/j.diamond.2008.03.020

    Article  CAS  Google Scholar 

  81. Cui S, Hu EL (2013) Increased negatively charged nitrogen-vacancy centers in fluorinated diamond. Appl Phys Lett 103:051603. https://doi.org/10.1063/1.4817651

    Article  CAS  Google Scholar 

  82. Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930. https://pubs.acs.org/doi/10.1021/cm048875q

  83. Widmann CJ, Giese C, Wolfer M et al (2014) F- and Cl-terminations of (100)-oriented single crystalline diamond. Phys Status Solidi A 211:2328–2332. https://doi.org/10.1002/pssa.201431188

    Article  CAS  Google Scholar 

  84. Havlik J, Raabova H, Gulka M et al (2016) Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv Funct Mater 26:4134–4142. https://doi.org/10.1002/adfm.201504857

    Article  CAS  Google Scholar 

  85. Spitsyn BV, Denisov SA, Skorik NA et al (2010) The physical–chemical study of detonation nanodiamond application in adsorption and chromatography. Diam Relat Mater 19:123–127. https://doi.org/10.1016/j.diamond.2009.10.020

    Article  CAS  Google Scholar 

  86. Martín R, Heydorn PC, Alvaro M, Garcia H (2009) General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem Mater 21:4505–4514. https://doi.org/10.1021/cm9012602

    Article  CAS  Google Scholar 

  87. Schietinger S, Barth M, Aichele T, Benson O (2009) Plasmon-enhanced single photon emission from a nanoassembled metal−diamond hybrid structure at room temperature. Nano Lett 9:1694–1698. https://doi.org/10.1021/nl900384c

    Article  CAS  Google Scholar 

  88. Nakamura T, Ohana T, Hagiwara Y, Tsubota T (2009) Photochemical modification of diamond powders with elemental sulfur and their surface-attachment behavior on gold surfaces. Phys Chem Chem Phys 11:730–734. https://doi.org/10.1039/B814406K

    Article  CAS  Google Scholar 

  89. Miller JB, Brown DW (1995) Properties of photochemically modified diamond films. Diam Relat Mater 4:435–440. https://doi.org/10.1016/0925-9635(94)05209-3

    Article  CAS  Google Scholar 

  90. Yeap WS, Chen S, Loh KP (2009) Detonation nanodiamond: an organic platform for the Suzuki coupling of organic molecules. Langmuir 25:185–191. https://doi.org/10.1021/la8029787

    Article  CAS  Google Scholar 

  91. Girard HA, Petit T, Perruchas S et al (2011) Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys Chem Chem Phys 13:11517–11523. https://doi.org/10.1039/C1CP20424F

    Article  CAS  Google Scholar 

  92. Arnault JC, Girard HA (2017) Hydrogenated nanodiamonds: synthesis and surface properties. Curr Opin Solid State Mater Sci 21:10–16. https://doi.org/10.1016/j.cossms.2016.06.007

    Article  CAS  Google Scholar 

  93. Yeganeh M, Coxon PR, Brieva AC et al (2007) Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys Rev B 75:155404. https://doi.org/10.1103/PhysRevB.75.155404

    Article  CAS  Google Scholar 

  94. Arnault JC, Saada S, Nesladek M et al (2008) Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth. Diam Relat Mater 17:1143–1149. https://doi.org/10.1016/j.diamond.2008.01.008

    Article  CAS  Google Scholar 

  95. Girard HA, Arnault JC, Perruchas S et al (2010) Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diam Relat Mater 19:1117–1123. https://doi.org/10.1016/j.diamond.2010.03.019

    Article  CAS  Google Scholar 

  96. Kong XL, Huang LCL, Hsu C-M et al (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77:259–265. https://doi.org/10.1021/ac048971a

    Article  CAS  Google Scholar 

  97. Lin C-L, Lin C-H, Chang H-C, Su M-C (2015) Protein attachment on nanodiamonds. J Phys Chem A 119:7704–7711. https://doi.org/10.1021/acs.jpca.5b01031

    Article  CAS  Google Scholar 

  98. Bondar VS, Pozdnyakova IO, Puzyr AP (2004) Applications of nanodiamonds for separation and purification of proteins. Phys Solid State 46:758–760. https://doi.org/10.1134/1.1711468

    Article  CAS  Google Scholar 

  99. Shimkunas RA, Robinson E, Lam R et al (2009) Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30:5720–5728. https://doi.org/10.1016/j.biomaterials.2009.07.004

    Article  CAS  Google Scholar 

  100. Petrakova V, Benson V, Buncek M et al (2016) Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 8:12002–12012. https://doi.org/10.1039/C6NR00610H

    Article  CAS  Google Scholar 

  101. Wu Y, Ermakova A, Liu W et al (2015) Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Adv Funct Mater 25:6576–6585. https://doi.org/10.1002/adfm.201502704

    Article  CAS  Google Scholar 

  102. Krysova H, Vlckova-Zivcova Z, Barton J et al (2014) Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. Phys Chem Chem Phys 17:1165–1172. https://doi.org/10.1039/C4CP04148H

    Article  CAS  Google Scholar 

  103. Vavra J, Rehor I, Rendler T et al (2018) Supported lipid bilayers on fluorescent nanodiamonds: a structurally defined and versatile coating for bioapplications. Adv Funct Mater 28:1803406. https://doi.org/10.1002/adfm.201803406

    Article  CAS  Google Scholar 

  104. Mochalin VN, Pentecost A, Li X-M et al (2013) Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol Pharm 10:3728–3735. https://doi.org/10.1021/mp400213z

    Article  CAS  Google Scholar 

  105. Wang X, Low XC, Hou W et al (2014) Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 8:12151–12166. https://doi.org/10.1021/nn503491e

    Article  CAS  Google Scholar 

  106. Moore LK, Caldwell MA, Townsend TR et al (2019) Water-soluble nanoconjugate for enhanced cellular delivery of receptor-targeted magnetic resonance contrast agents. Bioconjug Chem 30:2947–2957. https://doi.org/10.1021/acs.bioconjchem.9b00640

    Article  CAS  Google Scholar 

  107. Zheng T, Perona Martínez F, Storm IM et al (2017) Recombinant protein polymers for colloidal stabilization and improvement of cellular uptake of diamond nanosensors. Anal Chem 89:12812–12820. https://doi.org/10.1021/acs.analchem.7b03236

    Article  CAS  Google Scholar 

  108. Cai R, Chen C (2019) The crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater 31:1805740. https://doi.org/10.1002/adma.201805740

    Article  CAS  Google Scholar 

  109. Rehor I, Mackova H, Filippov SK et al (2014) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem 79:21–24. https://doi.org/10.1002/cplu.201300339

    Article  CAS  Google Scholar 

  110. Wang D, Tong Y, Li Y et al (2013) PEGylated nanodiamond for chemotherapeutic drug delivery. Diam Relat Mater 36:26–34. https://doi.org/10.1016/j.diamond.2013.04.002

    Article  CAS  Google Scholar 

  111. Zou Y, Ito S, Yoshino F et al (2020) Polyglycerol grafting shields nanoparticles from protein corona formation to avoid macrophage uptake. ACS Nano 14:7216–7226. https://doi.org/10.1021/acsnano.0c02289

    Article  CAS  Google Scholar 

  112. Kvakova K, Ondra M, Schimer J, et al (2022) Visualization of sentinel lymph nodes with mannosylated fluorescent nanodiamonds. Adv Funct Mater 2109960. https://doi.org/10.1002/adfm.202109960

  113. Slegerova J, Hajek M, Rehor I et al (2015) Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale 7:415–420. https://doi.org/10.1039/C4NR02776K

    Article  CAS  Google Scholar 

  114. Zhao L, Xu Y-H, Akasaka T et al (2014) Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 35:5393–5406. https://doi.org/10.1016/j.biomaterials.2014.03.041

    Article  CAS  Google Scholar 

  115. Lu M, Wang Y-K, Zhao J et al (2016) PEG grafted-nanodiamonds for the delivery of gemcitabine. Macromol Rapid Commun 37:2023–2029. https://doi.org/10.1002/marc.201600344

    Article  CAS  Google Scholar 

  116. Zhang X, Fu C, Feng L et al (2012) PEGylation and polyPEGylation of nanodiamond. Polymer 53:3178–3184. https://doi.org/10.1016/j.polymer.2012.05.029

    Article  CAS  Google Scholar 

  117. Kennedy ZC, Barrett CA, Warner MG (2017) Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1,2,3-triazole-functionalized particles. Langmuir 33:2790–2798. https://doi.org/10.1021/acs.langmuir.6b04477

    Article  CAS  Google Scholar 

  118. Neburkova J, Sedlak F, Zackova Suchanova J et al (2018) Inhibitor–GCPII interaction: selective and robust system for targeting cancer cells with structurally diverse nanoparticles. Mol Pharm 15:2932–2945. https://doi.org/10.1021/acs.molpharmaceut.7b00889

    Article  CAS  Google Scholar 

  119. Meinhardt T, Lang D, Dill H, Krueger A (2011) Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv Funct Mater 21:494–500. https://doi.org/10.1002/adfm.201001219

    Article  CAS  Google Scholar 

  120. Claveau S, Kindermann M, Papine A et al (2021) Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of active siRNA to a xenografted tumor in mice. Nanoscale 13:9280–9292. https://doi.org/10.1039/D1NR00146A

    Article  CAS  Google Scholar 

  121. Zhang X-Q, Chen M, Lam R et al (2009) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3:2609–2616. https://doi.org/10.1021/nn900865g

    Article  CAS  Google Scholar 

  122. Barton J, Gulka M, Tarabek J et al (2020) Nanoscale dynamic readout of a chemical redox process using radicals coupled with nitrogen-vacancy centers in nanodiamonds. ACS Nano 14:12938–12950. https://doi.org/10.1021/acsnano.0c04010

    Article  CAS  Google Scholar 

  123. Rendler T, Neburkova J, Zemek O et al (2017) Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat Commun 8:14701. https://doi.org/10.1038/ncomms14701

    Article  CAS  Google Scholar 

  124. Rehor I, Lee KL, Chen K et al (2015) Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv Healthc Mater 4:460–468. https://doi.org/10.1002/adhm.201400421

    Article  CAS  Google Scholar 

  125. Raabova H, Chvatil D, Cigler P (2019) Diamond nano-optode for fluorescent measurements of pH and temperature. Nanoscale 11:18537–18542. https://doi.org/10.1039/C9NR03710A

    Article  CAS  Google Scholar 

  126. Slegerova J, Rehor I, Havlik J et al (2014) Nanodiamonds as intracellular probes for imaging in biology and medicine. In: Prokop A, Iwasaki Y, Harada A (eds) Intracellular delivery II. Springer, Netherlands, Dordrecht, pp 363–401

    Chapter  Google Scholar 

  127. Zhang B, Feng X, Yin H et al (2017) Anchored but not internalized: shape dependent endocytosis of nanodiamond. Sci Rep 7:46462. https://doi.org/10.1038/srep46462

    Article  CAS  Google Scholar 

  128. Chu Z, Zhang S, Zhang B et al (2014) Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 4:4495. https://doi.org/10.1038/srep04495

    Article  CAS  Google Scholar 

  129. Solarska K, Gajewska A, Kaczorowski W et al (2012) Effect of nanodiamond powders on the viability and production of reactive oxygen and nitrogen species by human endothelial cells. Diam Relat Mater 21:107–113. https://doi.org/10.1016/j.diamond.2011.10.020

    Article  CAS  Google Scholar 

  130. Hemelaar SR, Nagl A, Bigot F et al (2017) The interaction of fluorescent nanodiamond probes with cellular media. Microchim Acta 184:1001–1009. https://doi.org/10.1007/s00604-017-2086-6

    Article  CAS  Google Scholar 

  131. Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20:425103. https://doi.org/10.1088/0957-4484/20/42/425103

    Article  CAS  Google Scholar 

  132. Mohan N, Chen C-S, Hsieh H-H et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699. https://doi.org/10.1021/nl1021909

    Article  CAS  Google Scholar 

  133. Yuan Y, Chen Y, Liu J-H et al (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18:95–100. https://doi.org/10.1016/j.diamond.2008.10.031

    Article  CAS  Google Scholar 

  134. Moore L, Yang J, Lan TTH et al (2016) Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano 10:7385–7400. https://doi.org/10.1021/acsnano.6b00839

    Article  CAS  Google Scholar 

  135. Yu S-J, Kang M-W, Chang H-C et al (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605. https://doi.org/10.1021/ja0567081

    Article  CAS  Google Scholar 

  136. Lin H-H, Lee H-W, Lin R-J et al (2015) Tracking and finding slow-proliferating/quiescent cancer stem cells with fluorescent nanodiamonds. Small 11:4394–4402. https://doi.org/10.1002/smll.201500878

    Article  CAS  Google Scholar 

  137. Moore L, Grobárová V, Shen H et al (2014) Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale 2014:11712–11721. https://doi.org/10.1039/C4NR02570A

    Article  Google Scholar 

  138. Paget V, Sergent JA, Grall R et al (2014) Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 8:46–56. https://doi.org/10.3109/17435390.2013.855828

    Article  CAS  Google Scholar 

  139. Vial S, Mansuy C, Sagan S et al (2008) Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. ChemBioChem 9:2113–2119. https://doi.org/10.1002/cbic.200800247

    Article  CAS  Google Scholar 

  140. Wu T-J, Tzeng Y-K, Chang W-W et al (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8:682–689. https://doi.org/10.1038/nnano.2013.147

    Article  CAS  Google Scholar 

  141. Hsu T-C, Liu K-K, Chang H-C et al (2014) Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci Rep 4:5004. https://doi.org/10.1038/srep05004

    Article  CAS  Google Scholar 

  142. Huang Y-A, Kao C-W, Liu K-K et al (2014) The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep 4:6919. https://doi.org/10.1038/srep06919

    Article  CAS  Google Scholar 

  143. Hemelaar SR, Saspaanithy B, L’Hommelet SRM, et al (2018) The response of HeLa cells to fluorescent nanodiamond uptake. Sensors 18. https://doi.org/10.3390/s18020355

  144. Karpukhin AV, Avkhacheva NV, Yakovlev RYu et al (2011) Effect of detonation nanodiamonds on phagocyte activity. Cell Biol Int 35:727–733. https://doi.org/10.1042/CBI20100548

    Article  Google Scholar 

  145. Xing Y, Xiong W, Zhu L et al (2011) DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5:2376. https://pubs.acs.org/doi/abs/10.1021/nn200279k

    Article  CAS  Google Scholar 

  146. Niemiec T, Szmidt M, Sawosz E et al (2011) The effect of diamond nanoparticles on redox and immune parameters in rats. J Nanosci Nanotechnol 11:9072–9077. https://doi.org/10.1166/jnn.2011.3511

    Article  CAS  Google Scholar 

  147. Lin Y-C, Perevedentseva E, Tsai L-W et al (2012) Nanodiamond for intracellular imaging in the microorganisms in vivo. J Biophotonics 5:838–847. https://doi.org/10.1002/jbio.201200088

    Article  CAS  Google Scholar 

  148. Thomas V, Halloran BA, Ambalavanan N et al (2012) In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8:1939–1947. https://doi.org/10.1016/j.actbio.2012.01.033

    Article  CAS  Google Scholar 

  149. Yakovlev RYu, Dogadkin NN, Kulakova II et al (2015) Determination of impurities in detonation nanodiamonds by gamma activation analysis method. Diam Relat Mater 55:77–86. https://doi.org/10.1016/j.diamond.2015.03.010

    Article  CAS  Google Scholar 

  150. (2018) Biocompatibility of nanodiamonds. In: Fluorescent nanodiamonds. John Wiley & Sons, Ltd, 73–89

  151. Tsai L-W, Lin Y-C, Perevedentseva E et al (2016) Nanodiamonds for medical applications: interaction with blood in vitro and in vivo. Int J Mol Sci 17:1111. https://doi.org/10.3390/ijms17071111

    Article  CAS  Google Scholar 

  152. Li H-C, Hsieh F-J, Chen C-P, et al (2013) The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. Sci Rep 3https://doi.org/10.1038/srep03044

  153. Huang K-J, Lee C-Y, Lin Y-C et al (2017) Phagocytosis and immune response studies of macrophage-nanodiamond interactions in vitro and in vivo. J Biophotonics 10:1315–1326. https://doi.org/10.1002/jbio.201600202

    Article  CAS  Google Scholar 

  154. Lin Y-C, Tsai L-W, Perevedentseva EV et al (2012) The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J Biomed Opt 17:101512. https://doi.org/10.1117/1.JBO.17.10.101512

    Article  Google Scholar 

  155. Vaijayanthimala V, Cheng P-Y, Yeh S-H et al (2012) The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33:7794–7802. https://doi.org/10.1016/j.biomaterials.2012.06.084

    Article  CAS  Google Scholar 

  156. Puzyr AP, Baron AV, Purtov KV et al (2007) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16:2124–2128. https://doi.org/10.1016/j.diamond.2007.07.025

    Article  CAS  Google Scholar 

  157. Mogilnaya OA, Puzyr AP, Baron AV, Bondar VS (2010) Hematological parameters and the state of liver cells of rats after oral administration of aflatoxin B1 alone and together with nanodiamonds. Nanoscale Res Lett 5:908–912. https://doi.org/10.1007/s11671-010-9571-8

    Article  CAS  Google Scholar 

  158. Yuan Y, Wang X, Jia G et al (2010) Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater 19:291–299. https://doi.org/10.1016/j.diamond.2009.11.022

    Article  CAS  Google Scholar 

  159. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  Google Scholar 

  160. Rao W, Wang H, Han J et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9:5725–5740. https://doi.org/10.1021/nn506928p

    Article  CAS  Google Scholar 

  161. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190. https://doi.org/10.1021/acs.chemrev.5b00116

    Article  CAS  Google Scholar 

  162. Florence AT (2012) “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Controlled Release 164:115–124. https://doi.org/10.1016/j.jconrel.2012.03.022

    Article  CAS  Google Scholar 

  163. Lazarovits J, Chen YY, Sykes EA, Chan WCW (2015) Nanoparticle–blood interactions: the implications on solid tumour targeting. Chem Commun 51:2756–2767. https://doi.org/10.1039/C4CC07644C

    Article  CAS  Google Scholar 

  164. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618. https://doi.org/10.1016/j.nantod.2012.10.010

    Article  CAS  Google Scholar 

  165. Guan B, Zou F, Zhi J (2010) Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small 6:1514–1519. https://doi.org/10.1002/smll.200902305

    Article  CAS  Google Scholar 

  166. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386. https://doi.org/10.1038/222385a0

    Article  CAS  Google Scholar 

  167. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. https://doi.org/10.1038/nature02388

    Article  CAS  Google Scholar 

  168. Ahn GY, Yun TH, Park J et al (2019) Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Colloids Surf B Biointerfaces 180:273–280. https://doi.org/10.1016/j.colsurfb.2019.04.063

    Article  CAS  Google Scholar 

  169. Cheng L, Wang C, Feng L et al (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  Google Scholar 

  170. Ray PC, Khan SA, Singh AK et al (2012) Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 41:3193–3209. https://doi.org/10.1039/C2CS15340H

    Article  CAS  Google Scholar 

  171. Zou L, Wang H, He B et al (2016) Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6:762–772. https://doi.org/10.7150/thno.14988

    Article  CAS  Google Scholar 

  172. Xu L, Cheng L, Wang C et al (2014) Conjugated polymers for photothermal therapy of cancer. Polym Chem 5:1573–1580. https://doi.org/10.1039/C3PY01196H

    Article  CAS  Google Scholar 

  173. Chiang J-C, MacDiarmid AG (1986) ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205. https://doi.org/10.1016/0379-6779(86)90070-6

    Article  CAS  Google Scholar 

  174. Jimenez CM, Knezevic NZ, Rubio YG et al (2016) Nanodiamond–PMO for two-photon PDT and drug delivery. J Mater Chem B 4:5803–5808. https://doi.org/10.1039/C6TB01915C

    Article  CAS  Google Scholar 

  175. (Rob) Aggarwal S, (2014) A survey of breakthrough therapy designations. Nat Biotechnol 32:323–330. https://doi.org/10.1038/nbt.2864

    Article  CAS  Google Scholar 

  176. Muehlmann LA, Rodrigues MC, Longo JPF et al (2015) Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells. J Nanobiotechnology 13:36. https://doi.org/10.1186/s12951-015-0095-3

    Article  CAS  Google Scholar 

  177. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor1. Cancer Res 36:2326–2329

    CAS  Google Scholar 

  178. Nishikawa M, Kang HG, Zou Y et al (2021) Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy. Bull Chem Soc Jpn 94:2302–2312. https://doi.org/10.1246/bcsj.20210200

    Article  CAS  Google Scholar 

  179. Wongthai P, Hagiwara K, Miyoshi Y et al (2015) Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci 106:279–286. https://doi.org/10.1111/cas.12602

    Article  CAS  Google Scholar 

  180. Kawai K, Nishimura K, Okada S et al (2020) Cyclic RGD-functionalized closo-dodecaborate albumin conjugates as integrin targeting boron carriers for neutron capture therapy. Mol Pharm 17:3740–3747. https://doi.org/10.1021/acs.molpharmaceut.0c00478

    Article  CAS  Google Scholar 

  181. Kim A, Suzuki M, Matsumoto Y et al (2021) Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 268:120551. https://doi.org/10.1016/j.biomaterials.2020.120551

    Article  CAS  Google Scholar 

  182. Kim A, Suzuki Y, Nagasaki Y (2021) Molecular design of a high-performance polymeric carrier for delivery of a variety of boronic acid-containing drugs. Acta Biomater 121:554–565. https://doi.org/10.1016/j.actbio.2020.12.015

    Article  CAS  Google Scholar 

  183. Kuthala N, Vankayala R, Li Y-N et al (2017) Engineering novel targeted boron-10-enriched theranostic nanomedicine to combat against murine brain tumors via MR imaging-guided boron neutron capture therapy. Adv Mater 29:1700850. https://doi.org/10.1002/adma.201700850

    Article  CAS  Google Scholar 

  184. Li L, Li J, Shi Y et al (2019) On-demand biodegradable boron nitride nanoparticles for treating triple negative breast cancer with boron neutron capture therapy. ACS Nano 13:13843–13852. https://doi.org/10.1021/acsnano.9b04303

    Article  CAS  Google Scholar 

  185. Suzuki M (2020) Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol 25:43–50. https://doi.org/10.1007/s10147-019-01480-4

    Article  Google Scholar 

  186. Dymova MA, Taskaev SY, Richter VA, Kuligina EV (2020) Boron neutron capture therapy: current status and future perspectives. Cancer Commun 40:406–421. https://doi.org/10.1002/cac2.12089

    Article  Google Scholar 

  187. Barth RF, Grecula JC (2020) Boron neutron capture therapy at the crossroads - where do we go from here? Appl Radiat Isot 160:109029. https://doi.org/10.1016/j.apradiso.2019.109029

    Article  CAS  Google Scholar 

  188. Wang Z, Tian Z, Dong Y et al (2015) Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diam Relat Mater 58:84–93. https://doi.org/10.1016/j.diamond.2015.06.008

    Article  CAS  Google Scholar 

  189. Yang P-H, Sun X, Chiu J-F et al (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug Chem 16:494–496. https://doi.org/10.1021/bc049775d

    Article  CAS  Google Scholar 

  190. Weng M-F, Chiang S-Y, Wang N-S, Niu H (2009) Fluorescent nanodiamonds for specifically targeted bioimaging: application to the interaction of transferrin with transferrin receptor. Diam Relat Mater 18:587–591. https://doi.org/10.1016/j.diamond.2008.07.012

    Article  CAS  Google Scholar 

  191. Yong K-T, Qian J, Roy I et al (2007) Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. Nano Lett 7:761–765. https://doi.org/10.1021/nl063031m

    Article  CAS  Google Scholar 

  192. Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620–630. https://doi.org/10.1007/s00216-005-0247-7

    Article  CAS  Google Scholar 

  193. Farokhzad OC, Jon S, Khademhosseini A et al (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672. https://doi.org/10.1158/0008-5472.CAN-04-2550

    Article  CAS  Google Scholar 

  194. Farokhzad OC, Cheng J, Teply BA et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 103:6315–6320. https://doi.org/10.1073/pnas.0601755103

    Article  CAS  Google Scholar 

  195. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587. https://doi.org/10.1124/pr.54.4.561

    Article  CAS  Google Scholar 

  196. Li L, Tian L, Wang Y et al (2016) Smart pH-responsive and high doxorubicin loading nanodiamond for in vivo selective targeting, imaging, and enhancement of anticancer therapy. J Mater Chem B 4:5046–5058. https://doi.org/10.1039/C6TB00266H

    Article  CAS  Google Scholar 

  197. Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 7:1959–1973. https://doi.org/10.1021/mp100269f

    Article  CAS  Google Scholar 

  198. Licata S, Saponiero A, Mordente A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13:414–420. https://doi.org/10.1021/tx000013q

    Article  CAS  Google Scholar 

  199. Li X, Yang X, Lin Z et al (2015) A folate modified pH sensitive targeted polymeric micelle alleviated systemic toxicity of doxorubicin (DOX) in multi-drug resistant tumor bearing mice. Eur J Pharm Sci 76:95–101. https://doi.org/10.1016/j.ejps.2015.04.018

    Article  CAS  Google Scholar 

  200. Ge Z, Liu S (2013) Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 42:7289–7325. https://doi.org/10.1039/C3CS60048C

    Article  CAS  Google Scholar 

  201. Das M, Datir SR, Singh RP, Jain S (2013) Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabeled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol Pharm 10:2543–2557. https://doi.org/10.1021/mp300701e

    Article  CAS  Google Scholar 

  202. Li Y, Zhou X, Wang D et al (2011) Nanodiamond mediated delivery of chemotherapeutic drugs. J Mater Chem 21:16406. https://doi.org/10.1039/c1jm10926j

    Article  CAS  Google Scholar 

  203. Chow EK, Zhang X-Q, Chen M et al (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3:73ra21. https://www.science.org/doi/10.1126/scitranslmed.3001713

    Article  Google Scholar 

  204. Xiao J, Duan X, Yin Q et al (2013) Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34:9648–9656. https://doi.org/10.1016/j.biomaterials.2013.08.056

    Article  CAS  Google Scholar 

  205. Koo H, Huh MS, Ryu JH et al (2011) Nanoprobes for biomedical imaging in living systems. Nano Today 6:204–220. https://doi.org/10.1016/j.nantod.2011.02.007

    Article  CAS  Google Scholar 

  206. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664. https://doi.org/10.1038/nrclinonc.2010.139

    Article  CAS  Google Scholar 

  207. Du X, Li L, Wei S et al (2020) A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 8:1660–1671. https://doi.org/10.1039/C9TB02259G

    Article  CAS  Google Scholar 

  208. Xi G, Robinson E, Mania-Farnell B et al (2014) Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed Nanotechnol Biol Med 10:381–391. https://doi.org/10.1016/j.nano.2013.07.013

    Article  CAS  Google Scholar 

  209. Li J, Zhu Y, Li W et al (2010) Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31:8410–8418. https://doi.org/10.1016/j.biomaterials.2010.07.058

    Article  CAS  Google Scholar 

  210. Dong Y, Cao R, Li Y et al (2015) Folate-conjugated nanodiamond for tumor-targeted drug delivery. RSC Adv 5:82711–82716. https://doi.org/10.1039/C5RA12383F

    Article  CAS  Google Scholar 

  211. Wei S, Li L, Du X, Li Y (2019) OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. J Mater Chem B 7:3390–3402. https://doi.org/10.1039/C9TB00447E

    Article  CAS  Google Scholar 

  212. Wu Y, Alam MNA, Balasubramanian P et al (2021) Fluorescent nanodiamond–nanogels for nanoscale sensing and photodynamic applications. Adv NanoBiomed Res 1:2000101. https://doi.org/10.1002/anbr.202000101

    Article  Google Scholar 

  213. Heinemann F, Karges J, Gasser G (2017) Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc Chem Res 50:2727–2736. https://doi.org/10.1021/acs.accounts.7b00180

    Article  CAS  Google Scholar 

  214. Chakrabortty S, Agrawalla BK, Stumper A et al (2017) Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. J Am Chem Soc 139:2512–2519. https://doi.org/10.1021/jacs.6b13399

    Article  CAS  Google Scholar 

  215. Cheng L-C, Chen HM, Lai T-C et al (2008) Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5:3931–3940. https://doi.org/10.1039/C3NR34091K

    Article  Google Scholar 

  216. Chang Y-R, Lee H-Y, Chen K et al (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288. https://doi.org/10.1038/nnano.2008.99

    Article  CAS  Google Scholar 

  217. Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131:4594–4595. https://doi.org/10.1021/ja9004514

    Article  CAS  Google Scholar 

  218. Krueger A (2008) The structure and reactivity of nanoscale diamond. J Mater Chem 18:1485–1492. https://doi.org/10.1039/B716673G

    Article  CAS  Google Scholar 

  219. Cao L, Sahu S, Anilkumar P et al (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133:4754–4757. https://doi.org/10.1021/ja200804h

    Article  CAS  Google Scholar 

Download references

Funding

S. B. received the research promotion grant no. 11/1–349/2022/FIN-B/, dated 23rd March 2022 from Mizoram University, India. S. C. received Startup Research Funding from the SRM University AP.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: G. P. and S. C. Draft preparation; writing—review and editing: G. P., S. B. and S. C. G. P. ORCID ID 0000–0002-2225–2570; S. B. ORCID ID: 0000–0002-0932-105X; S. C. ORCID ID 0000–0002-2759–2208.

Corresponding authors

Correspondence to Goutam Pramanik or Sabyasachi Chakrabortty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, G., Bag, S. & Chakrabortty, S. Fluorescent nanodiamond for nanotheranostic applications. Microchim Acta 189, 447 (2022). https://doi.org/10.1007/s00604-022-05545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05545-6

Keywords

Navigation