Skip to main content
Log in

Culture and in situ H2O2-mediated electrochemical study of cancer cells using three-dimensional scaffold based on graphene foam coated with Fe3O4 nanozyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For real-time evaluation of the cell behavior and function under in vivo-like 3D environment, the 3D functionalized scaffolds simultaneously integrate the function of 3D cell culture, and electrochemical sensing is a convincing candidate. Herein, Fe3O4 nanoparticles as the nanozyme (peroxide oxidase mimics) were modified on graphene foam scaffold to construct a 3D integrated platform. The platform displayed a wide linear range of 100 nM to 20 μM and a high sensitivity of 53.2 nA μM−1 toward detection of hydrogen peroxide (H2O2) under the working potential of + 0.6 V (vs. Ag/AgCl). The obtained 3D scaffold also displayed satisfactory selectivity toward the possible interferents that appeared in the cell culture environment. Furthermore, the cells still maintained high cell viability (almost 100%) after their growth and proliferation on the scaffold for 7 days. With the superior performance on cell culture and electrochemical monitoring, the functions on the 3D culture of MCF-7 or HeLa cells and in situ monitoring of cell-released H2O2 was easily achieved on this 3D platform, which show its great application prospects on further cancer-related disease diagnosis or drug screening.

Graphical abstract

A nanozyme-based three-dimensional graphene scaffold was successfully constructed for cell culture and identification of cancer cells through in situ electrochemical monitoring of the cell-released H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dubiel EA, Martin Y, Vermette P (2011) Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions. Chem Rev 111:2900–2936. https://doi.org/10.1021/cr9002598

    Article  CAS  PubMed  Google Scholar 

  2. Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, Antonow D, Severino P, Bonorino C (2020) Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl 107:110264. https://doi.org/10.1016/j.msec.2019.110264

    Article  CAS  PubMed  Google Scholar 

  3. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. https://doi.org/10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117:12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, Ibbs M, Blizniak R, Luczewski L, Lamperska K (2018) 2D and 3D cell cultures—a comparison of different types of cancer cell cultures. Arch Med Sci 14:910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  PubMed  Google Scholar 

  6. Castiaux AD, Spence DM, Martin RS (2019) Review of 3D cell culture with analysis in microfluidic systems. Anal Methods 11:4220–4232. https://doi.org/10.1039/C9AY01328H

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu YJ, Kim YH, Na K, Min SY, Hwang OK, Park DK, Kim DY, Choi SH, Kamm RD, Chung S, Kim JA (2018) Hydrogel-incorporating unit in a well: 3D cell culture for high-throughput analysis. Lab Chip 18:2604–2613. https://doi.org/10.1039/C8LC00525G

    Article  CAS  PubMed  Google Scholar 

  8. Liu YL, Huang WH (2021) Stretchable electrochemical sensors for cell and tissue detection. Angew Chem Int Ed 60:2757–2767. https://doi.org/10.1002/anie.202007754

    Article  CAS  Google Scholar 

  9. Zhang L, Tian Y (2018) Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain. Acc Chem Res 51:688–696. https://doi.org/10.1021/acs.accounts.7b00543

    Article  CAS  PubMed  Google Scholar 

  10. Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU (2020) Chitosan based bioactive materials in tissue engineering applications—a review. Bioact Mater 5:164–183. https://doi.org/10.1016/j.bioactmat.2020.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu XB, Liu YL, Wang WJ, Zhang HW, Qin Y, Guo S, Zhang XW, Fu L, Huang WH (2018) Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring. Anal Chem 90:1136–1141. https://doi.org/10.1021/acs.analchem.7b03324

    Article  CAS  PubMed  Google Scholar 

  12. Hu XB, Qin Y, Fan WT, Liu YL, Huang WH (2021) A three-dimensional electrochemical biosensor integrated with hydrogel enables real-time monitoring of cells under their in vivo-like microenvironment. Anal Chem 93:7917–7924. https://doi.org/10.1021/acs.analchem.1c00621

    Article  CAS  PubMed  Google Scholar 

  13. Qin Y, Hu XB, Fan WT, Yan J, Cheng SB, Liu YL, Huang WH (2021) A stretchable scaffold with electrochemical sensing for 3D culture, mechanical loading, and real-time monitoring of cells. Adv Sci 8:e2003738. https://doi.org/10.1002/advs.202003738

    Article  CAS  Google Scholar 

  14. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120:3852–3889. https://doi.org/10.1021/acs.chemrev.9b00739

    Article  CAS  PubMed  Google Scholar 

  15. Lian M, Xu L, Zhu X, Chen X, Yang W, Wang T (2017) Seamless signal transduction from three-dimensional cultured cells to a superoxide anions biosensor via in situ self-assembly of dipeptide hydrogel. Anal Chem 89:12843–12849. https://doi.org/10.1021/acs.analchem.7b03371

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Liao C, Zhang L, Wang Q, Tian Y (2014) Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells. Anal Chem 86:4395–4401. https://doi.org/10.1021/ac500231e

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  19. Kuah E, Toh S, Yee J, Ma Q, Gao Z (2016) Enzyme mimics: advances and applications. Chem Eur J 22:8404–8430. https://doi.org/10.1002/chem.201504394

    Article  CAS  PubMed  Google Scholar 

  20. Hu X, Ma M, Mendes RG, Zeng M, Zhang Q, Xue Y, Zhang T, Rümmeli MH, Fu L (2015) Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes. J Mater Chem A 3:23930–23935. https://doi.org/10.1039/C5TA08014B

    Article  CAS  Google Scholar 

  21. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Ma M, Zeng M, Sun Y, Chen L, Xue Y, Zhang T, Ai X, Mendes RG, Rümmeli MH, Fu L (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533. https://doi.org/10.1021/am5066255

    Article  CAS  PubMed  Google Scholar 

  23. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430. https://doi.org/10.1016/S0022-4596(03)00294-9

    Article  CAS  Google Scholar 

  24. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. https://doi.org/10.1021/nn300097q

    Article  CAS  PubMed  Google Scholar 

  25. Ren G, Yang L, Zhang Z, Zhong B, Yang X, Wang X (2017) A new green synthesis of porous magnetite nanoparticles from waste ferrous sulfate by solid-phase reduction reaction. J Alloys Compd 710:875–879. https://doi.org/10.1016/j.jallcom.2017.03.337

    Article  CAS  Google Scholar 

  26. Li G, Li R, Zhou W (2017) A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett 9:46. https://doi.org/10.1007/s40820-017-0147-3

    Article  CAS  Google Scholar 

  27. Qian Tang X, Dan Zhang Y, Wei Jiang Z, Mei Wang D, Zhi Huang C, Fang Li Y (2018) Fe3O4 and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose. Talanta 179:43–50. https://doi.org/10.1016/j.talanta.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  28. Ke Q, Tang C, Liu Y, Liu H, Wang J (2014) Intercalating graphene with clusters of Fe3O4 nanocrystals for electrochemical supercapacitors. Mater Res Express 1:025015. https://doi.org/10.1088/2053-1591/1/2/025015

    Article  CAS  Google Scholar 

  29. Wilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13. https://doi.org/10.1016/j.apsusc.2014.02.006

    Article  CAS  Google Scholar 

  30. DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW (2005) Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A 102:5044–5049. https://doi.org/10.1073/pnas.0501154102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Makni-Maalej K, Chiandotto M, Hurtado-Nedelec M, Bedouhene S, Gougerot-Pocidalo MA, Dang PM, El-Benna J (2013) Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochem Pharmacol 85:92–100. https://doi.org/10.1016/j.bcp.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  32. Dai H, Chen Y, Niu X, Pan C, Chen H, Chen X (2018) High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@C-Co3O4 heterostructures. Biosens Bioelectron 118:36–43. https://doi.org/10.1016/j.bios.2018.07.022

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We sincerely appreciate the support from the National Natural Science Foundation of China (Nos. 21804117), the Key Scientific and Technological Project of Henan Province (212102210471, 182102310703) and the Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Bo Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3850 kb)

Supplementary file2 (AVI 2189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, XB., Shang, N., Chen, XH. et al. Culture and in situ H2O2-mediated electrochemical study of cancer cells using three-dimensional scaffold based on graphene foam coated with Fe3O4 nanozyme. Microchim Acta 189, 89 (2022). https://doi.org/10.1007/s00604-022-05203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05203-x

Keywords

Navigation