Skip to main content
Log in

ZIF-8 encapsulated upconversion nanoprobes to evaluate pH variations in food spoilage

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel nanoassembly was constructed through encapsulating upconversion nanoparticles (UCNPs) into a metal–organic framework structure (ZIF-8), in which doxorubicin (DOX) was absorbed into pores of ZIF-8. The blue emission of UCNPs was quenched by DOX through the fluorescence resonance energy transfer (FRET) strategy. When the nanoprobe was exposed to food samples with different pH values, ZIF-8 collapsed to release DOX molecules, resulting in upconversion recovery. The porous structure of ZIF-8 provides abundant space for DOX absorption, which significantly improves the detection capacities and accuracy. It is shown that the probe has a good linear relationship when pH values vary from 2.5 to 7.4, and can distinguish pH variations as low as 0.5 in real samples. This strategy has been successfully used to determine food spoilage by determination of pH variations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Y, Zhao Y, Zhou A, Qu Q, Zhang X, Song B, Liu K, Xiong R, Huang C (2021) “Turn-on” ratiometric fluorescent probe: naked-eye detection of acidic pH and citric acid (CA) by using fluorescence spectrum and its application in real food samples and zebrafish. Spectrochim Acta Part A 261(51):120014–120022

    Article  CAS  Google Scholar 

  2. Meng X, Ryu J, Kim B, Ko S (2016) Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clin Nutr Res 5(3):172–179

    Article  Google Scholar 

  3. Buck R, Rondinini S, Covington A, Baucke F, Wilson G (2002) The measurement of pH - definition, standards and procedures report of the working party on pH. Pure Appl Chem 74:2169–2200

    Article  CAS  Google Scholar 

  4. Khan M, Mukherjee K, Shoukat R, Dong H (2017) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23:4391–4404

    Article  CAS  Google Scholar 

  5. Pietro S, Valentina D, Arno K, Agata J, Teresa O, Andrea C, Tommaso L, Marco R (2017) Sensors and biosensors for c-reactive protein, temperature and pH, and their applications for monitoring wound healing: a review. Sensors 17(12):2952–2979

    Article  Google Scholar 

  6. Bandodkar A, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32(7):363–371

    Article  CAS  Google Scholar 

  7. Max W, Minh A, Jayaree C, Rona C (2020) Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem 326:127017–127024

    Article  Google Scholar 

  8. Cho T, Yassoralipour A, Lee Y, Tang T, Lai O, Chong L, Kuan C, Phuah E (2021) Evaluation of milk deterioration using simple biosensor. J Food Meas Charact 16:5761–5771

    Google Scholar 

  9. Puescu I, Todea A, Badea V, Peter F, Mihai M, Ionuț L, Gabriela V, Titus V (2019) Optical and thermal properties of intelligent pH indicator films based on chitosan/PVA and a new xanthylium dye. J Therm Anal Calorim 141(5):999–1008

    Google Scholar 

  10. Pandey G, Choudhary S, Chaudhari R, Joshi A (2020) Ultrasonic atomizer based development of pH sensor for real time analysis. Sci Rep 10(1):10910

    Article  CAS  Google Scholar 

  11. Qin Z, Zhao L, Lan M, Redshaw C, Wei G (2017) Quinoline-based fluorometric and colorimetric dual-modal pH probe and its application in bioimaging. Spectrochim Acta Part A 188:230–236

    Google Scholar 

  12. Mahata M, Bae H, Kang T (2017) Upconversion luminescence sensitized pH-nanoprobes. Molecular 22(12):2064-2090

  13. Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Martínez-Monzó J (2013) Effect of pH on color and texture of food products. Food Eng Rev 5(3):158–170

    Article  Google Scholar 

  14. Fan Y, Liu L, Zhang F (2019) Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today 25:68–84

    Article  CAS  Google Scholar 

  15. Qin X, Liu X, Huang W, Bettinelli M, Liu X (2017) Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem Rev 117(5):4488–4527

    Article  CAS  Google Scholar 

  16. Francois A (2004) Upconversion and anti-stokes processes with f and d ions in solids. ChemInform 35(16):139–173

    Google Scholar 

  17. Li Z, Yong Z, Shan J (2009) Multicolor core/shell-structured upconversion fluorescentnanoparticles. Adv Mater 20(24):4765–4769

    Article  Google Scholar 

  18. Jayakumar M, Idris N, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci U S A 109(22):8483–8488

    Article  CAS  Google Scholar 

  19. Yang Y-M (2014) Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Microchimic Acta 181(3–4):263–294

    Article  CAS  Google Scholar 

  20. Li C, Zuo J, Zhang L, Chang Y, Zhang Y, Tu L, Liu X, Xue B, Li Q, Zhao H (2016) Accurate quantitative sensing of intracellular pH based on self-ratiometric upconversion luminescent nanoprobe. Sci Rep 6(1):38617–38626

    Article  CAS  Google Scholar 

  21. Xu X, Long Y, Lei P, Dong L, Du K, Feng J, Zhang H (2017) A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles. J Mater Chem C 5:9666–9672

    Article  CAS  Google Scholar 

  22. Ma T, Yun M, Liu S, Zhang L, Yang T-S, Yang H-R, Lv W, Yu Q, Xu W-J, Zhao Q, Huang W (2015) Dye-conjugated upconversion nanoparticles for ratiometric imaging of intracellular pH values. J Mater Chem C 3(26):6616–6620

    Article  CAS  Google Scholar 

  23. Laguna M, Escudero A, Núñez N, Becerro A-I, Manuel O (2017) Europium-doped NaGd(WO4)2 nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing. Dalton Trans 46(35):11575–11583

    Article  CAS  Google Scholar 

  24. Li H, Dong H, Yu M-M, Liu C, Li Z-X, Wei L-H, Sun L, Zhang H (2017) NIR ratiometric luminescence detection of pH fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors. Anal Chem 89(17):8863–8869

    Article  CAS  Google Scholar 

  25. Du S, Hernandez-Gil J, Hao D, Zheng X, Long N (2017) Design and validation of a new ratiometric intracellular pH imaging probe using lanthanide-doped upconverting nanoparticles. Dalton Trans 46(40):13957–13965

    Article  CAS  Google Scholar 

  26. Riikka A, Tuomas N, Nylund S, Mattsson L, Koho S, Rosenholm J-M, Soukka T, Michael S (2014) Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 6(12):6837–6843

    Article  Google Scholar 

  27. Anh P, Christian J, Fernando J, Carolyn B, Michael O, Omar M (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  Google Scholar 

  28. Yao J, Wang H (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43(13):4470–4493

    Article  CAS  Google Scholar 

  29. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mate Chem A 2(40):16811–16831

    Article  CAS  Google Scholar 

  30. Chao Y, Jing X, Dan Y (2018) Icg@ZIF-8:one-step encapsulation of indocyanine green in ZIF-8 and use as a therapeutic nanoplatform. Chin Chem Lett 29(09):1421–1424

    Article  Google Scholar 

  31. Xiao L, Tao S, Ke D, Wang S (2016) In situ synthesis of ZIF-8 membranes with gas separation performance in a deep eutectic solvent. Acta Phys Chim Sin 32(6):1495–1500

    Article  Google Scholar 

  32. Meng F, Zhong Y, Cheng R, Deng C, Zhong Z (2014) pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine 9(3):487–499

    Article  CAS  Google Scholar 

  33. Souryadeep B, Rebecca H, Wun-Gwi K, Yadong C, Jayachandrababu K, Hungerford J, Dutzer M-R, Chen M, Walton K-S, Sholl D-S, Sankar N (2018) Acid gas stability of zeolitic imidazolate frameworks: generalized kinetic and thermodynamic characteristics. Chem Mater 30(12):4089–4101

    Article  Google Scholar 

  34. Qin Y, Peng H, He X, Li W, Zhang Y (2019) pH-responsive polymer-Stabilized ZIF-8 nanocomposite for fluorescence and magnetic resonance dual-modal imaging-guided chemo/photodynamic combinational cancer therapy. ACS Appl Mater Interfaces 11(37):34268–34281

    Article  CAS  Google Scholar 

  35. Fu X, Zhang G, Yang Z, Sun H, Cui J (2020) Co-delivery of anticancer drugs and cell penetrating peptides for improved cancer therapy. Chin Chem Lett 32(04):1559–1562

    Article  Google Scholar 

  36. Mei Q-S, Wei D, Wuer Z, Yisibashaer HJ, Guoqing D, Ming W, Bing N-L, Zhang Y (2015) Zinc-dithizone complex engineered upconverting nanosensors for the detection of hypochlorite in living cells. Small 11(35):4568–4575

    Article  CAS  Google Scholar 

  37. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa M, Christopher B (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006

    Article  CAS  Google Scholar 

  38. Lu G, Li S, Guo Z, Farha O, Hauser B, Qi X, Wang Y, Wang X, Han S, Liu X (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4(4):310–316

    Article  CAS  Google Scholar 

  39. Hao C, Wu X, Sun M, Zhang H, Kuang H (2019) Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J Am Chem Soc 141(49):19373–19378

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the grants from National Natural Science Foundation of China (21675038 and 22074028), and the Fundamental Research Funds for the Central Universities of China (PA2020GDKC0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Mei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2271 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Lu, Q., Fu, X. et al. ZIF-8 encapsulated upconversion nanoprobes to evaluate pH variations in food spoilage. Microchim Acta 189, 87 (2022). https://doi.org/10.1007/s00604-022-05196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05196-7

Keywords

Navigation