Skip to main content

Advertisement

Log in

LC-MS/MS determination of plasma catecholamines after selective extraction by borated zirconia

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For the first time, boronate affinity chromatography and metal oxide affinity chromatography mechanisms for cis-diol-compounds extraction are simultaneously realized on a single material, termed borated zirconia. This material was prepared by hydrolyzing zirconium butoxide with boric acid under non-aqueous environment. The diameter of formed particles is around 200 nm. By extracting catechol under different pH conditions or with phosphate ion competition, the dual affinity mechanisms of borated zirconia are confirmed. Benefiting from such unique feature, borated zirconia can function well under neutral condition. By using borated zirconia for dispersive solid phase extraction, specific capture of cis-diol-containing catecholamines, including epinephrine (E), norepinephrine (NE) and dopamine (DA), was achieved. A reliable LC-MS/MS method was established and validated for quantification of these target analytes in plasma samples after derivatisation with benzoyl chloride. The linear ranges are 0.010–0.200 ng·mL−1 for E and DA, and 0.050–1.000 ng·mL−1 for NE. The limits of quantification are 0.008, 0.020 and 0.004 ng·mL−1 for E, NE and DA respectively. By analyzing samples from healthy volunteers and schizophrenia patients, the plasma concentrations of E, NE and DA were found to be higher for the latter.

Schematic representation of boronate combined metal oxide affinity chromatography (BMOAC) extraction of cis-diol catecholamines from human plasma by borated zirconia following with benzoyl chloride derivatization and LC-MS determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Grouzmann E, Lamine F (2013) Determination of catecholamines in plasma and urine. Best Pract Res Cl En 27:713–723. https://doi.org/10.1016/j.beem.2013.06.004

    Article  CAS  Google Scholar 

  2. Young WF, Calhoun DA, Lenders JWM, Stowasser M, Textor SC (2017) Screening for Endocrine Hypertension: An Endocrine Society Scientific Statement. Endocr Rev 38:103–122. https://doi.org/10.1210/er.2017-00054

    Article  Google Scholar 

  3. Pedrini M, Cao B, Nani JVS, Cerqueira RO, Mansur RB, Tasic L, Hayashi MAF, McIntyre RS, Brietzke E (2019) Advances and challenges in development of precision psychiatry through clinical metabolomics on mood and psychotic disorders. Prog Neuro-Psychoph 93:182–188. https://doi.org/10.1016/j.pnpbp.2019.03.010

    Article  CAS  Google Scholar 

  4. Bicker J, Fortuna A, Alves G, Falcão A (2013) Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—A review. Anal Chim Acta 768:12–34. https://doi.org/10.1016/j.aca.2012.12.030

    Article  PubMed  CAS  Google Scholar 

  5. Lee W, Park NH, Lee YC, Kim K-H, Hong J (2018) Advances and challenges in neurochemical profiling of biological samples using mass spectrometry coupled with separation methods. TrAC-Trend Anal Chem 106:159–168. https://doi.org/10.1016/j.trac.2018.07.006

    Article  CAS  Google Scholar 

  6. Ji CJ, Walton J, Su Y, Tella M (2010) Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC-MS/MS. Anal Chim Acta 670:84–91. https://doi.org/10.1016/j.aca.2010.04.051

    Article  PubMed  CAS  Google Scholar 

  7. Ma J-B, Qiu H-W, Rui Q-H, Liao Y-F, Chen Y-M, Xu J, Zhan P-P, Zhao Y-G (2016) Fast determination of catecholamines in human plasma using carboxyl-functionalized magnetic-carbon nanotube molecularly imprinted polymer followed by liquid chromatography-tandem quadrupole mass spectrometry. J Chromatogr A 1429:86–96. https://doi.org/10.1016/j.chroma.2015.12.030

    Article  PubMed  CAS  Google Scholar 

  8. Zhang GD, Zhang YZ, Ji CJ, McDonald T, Walton J, Groeber EA, Steenwyk RC, Lin ZS (2012) Ultra sensitive measurement of endogenous epinephrine and norepinephrine in human plasma by semi-automated SPE-LC-MS/MS. J Chromatogr B 895:186–190. https://doi.org/10.1016/j.jchromb.2012.03.026

    Article  CAS  Google Scholar 

  9. Dunand M, Gubian D, Stauffer M, Abid K, Grouzmann E (2013) High-throughput and sensitive quantitation of plasma catecholamines by ultraperformance liquid chromatography–tandem mass spectrometry using a solid phase microwell extraction plate. Anal Chem 85:3539–3544. https://doi.org/10.1021/ac4004584

    Article  PubMed  CAS  Google Scholar 

  10. Zheng J, Mandal R, Wishart DS (2018) A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum. Anal Chim Acta 1037:159–167. https://doi.org/10.1016/j.aca.2018.01.021

    Article  PubMed  CAS  Google Scholar 

  11. Martin AR, Vasseur JJ, Smietana M (2013) Boron and nucleic acid chemistries: merging the best of both worlds. Chem Soc Rev 42:5684–5713. https://doi.org/10.1039/c3cs60038f

    Article  PubMed  CAS  Google Scholar 

  12. Xu J, Wu P, Ye EC, Yuan BF, Feng YQ (2016) Metal oxides in sample pretreatment. Trac-Trends in Anal Chem 80:41–56. https://doi.org/10.1016/j.trac.2016.02.027

    Article  CAS  Google Scholar 

  13. He M, Wei Y, Wang R, Wang C, Zhang B, Han L (2019) Boronate affinity magnetic nanoparticles with hyperbranched polymer brushes for the adsorption of cis-diol biomolecules. Microchim Acta 186:683. https://doi.org/10.1007/s00604-019-3785-y

    Article  CAS  Google Scholar 

  14. Wu J, Li Z, Jia L (2019) Solid phase extraction and capillary electrophoretic separation of racemic catecholamines by using magnetic particles coated with a copolymer prepared from poly(3,4-dihydroxyphenylalanine) and polyethyleneimine. Microchim Acta 186:627. https://doi.org/10.1007/s00604-019-3731-z

    Article  CAS  Google Scholar 

  15. Li H, Liu Z (2012) Recent advances in monolithic column-based boronate-affinity chromatography. TrAC-Trend Anal Chem 37:148–161. https://doi.org/10.1016/j.trac.2012.03.010

    Article  CAS  Google Scholar 

  16. Wang ST, Chen D, Ding J, Yuan BF, Feng YQ (2013) Borated titania, a new option for the selective enrichment of cis-diol biomolecules. Chem-Eur J 19:605–611. https://doi.org/10.1002/chem.201203109

    Article  CAS  Google Scholar 

  17. Wang S-T, Huang W, Lu W, Yuan B-F, Feng Y-Q (2013) TiO2-based solid phase extraction strategy for highly effective elimination of normal ribonucleosides before detection of 2′-deoxynucleosides/low-abundance 2′-O-modified ribonucleosides. Anal Chem 85:10512–10518. https://doi.org/10.1021/ac4025297

    Article  PubMed  CAS  Google Scholar 

  18. Wang S-T, Huang W, Deng Y-F, Gao Q, Yuan B-F, Feng Y-Q (2014) “Old” metal oxide affinity chromatography as “novel” strategy for specific capture of cis-diol-containing compounds. J Chromatogr A 1361:100–107. https://doi.org/10.1016/j.chroma.2014.07.091

    Article  PubMed  CAS  Google Scholar 

  19. Wu Q, Wu D, Guan Y (2014) Hybrid titania–zirconia nanoparticles coated adsorbent for highly selective capture of nucleosides from human urine in physiological condition. Anal Chem 86:10122–10130. https://doi.org/10.1021/ac502876u

    Article  PubMed  CAS  Google Scholar 

  20. Fan H, Chen P, Wang C, Wei Y (2016) Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides. J Chromatogr A 1448:20–31. https://doi.org/10.1016/j.chroma.2016.04.048

    Article  PubMed  CAS  Google Scholar 

  21. Jiang H-P, Chu J-M, Lan M-D, Liu P, Yang N, Zheng F, Yuan B-F, Feng Y-Q (2016) Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction--Mass spectrometry analysis. J Chromatogr A 1462:90–99. https://doi.org/10.1016/j.chroma.2016.07.086

    Article  PubMed  CAS  Google Scholar 

  22. Jiang M-Y, Huang Y-Q, Chu J-M, Zhu Q-F, Ding J, Yuan B-F, Feng Y-Q (2016) A magnetic ZrO2 based solid-phase extraction strategy for selective enrichment and profiling of glycosylated compounds in rice. Anal Methods-UK 8:6436–6443. https://doi.org/10.1039/C6AY01383J

    Article  CAS  Google Scholar 

  23. Chu J-M, Yin T-L, Zheng S-J, Yang J, Yuan B-F, Feng Y-Q (2017) Metal oxide-based dispersive solid-phase extraction coupled with mass spectrometry analysis for determination of ribose conjugates in human follicular fluid. Talanta 167:506–512. https://doi.org/10.1016/j.talanta.2017.02.062

    Article  PubMed  CAS  Google Scholar 

  24. Wan L, Zhu H, Guan Y, Huang G (2017) Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine. Talanta 169:209–215. https://doi.org/10.1016/j.talanta.2017.03.085

    Article  PubMed  CAS  Google Scholar 

  25. Jin S, Liu L, Zhou P (2018) Amorphous titania modified with boric acid for selective capture of glycoproteins. Microchim Acta 185:308. https://doi.org/10.1007/s00604-018-2824-4

    Article  CAS  Google Scholar 

  26. Xu Y, Yang Y, Xue A, Chen H, Li S (2018) In situ precipitation of hydrous titanium dioxide for dispersive micro solid-phase extraction of nucleosides and their separation. New J Chem 42:4909–4914. https://doi.org/10.1039/C7NJ04590E

    Article  CAS  Google Scholar 

  27. Mohyuddin A, Hussain D, Fatima B, Athar M, Ashiq MN, Najam-ul-Haq M (2019) Gallic acid functionalized UiO-66 for the recovery of ribosylated metabolites from human urine samples. Talanta 201:23–32. https://doi.org/10.1016/j.talanta.2019.03.072

    Article  PubMed  CAS  Google Scholar 

  28. Creutz C, Chou MH (2008) Binding of catechols to mononuclear titanium(IV) and to 1- and 5-nm TiO2 nanoparticles. Inorg Chem 47:3509–3514. https://doi.org/10.1021/ic701687k

    Article  PubMed  CAS  Google Scholar 

  29. Chen D, Caruso RA (2012) Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv Func Mater. https://doi.org/10.1002/adfm.201201880

    Article  CAS  Google Scholar 

  30. van de Merbel NC, Hendriks G, Imbos R, Tuunainen J, Rouru J, Nikkanen H (2011) Quantitative determination of free and total dopamine in human plasma by LC–MS/MS: the importance of sample preparation. Bioanalysis 3:1949–1961. https://doi.org/10.4155/bio.11.170

    Article  PubMed  CAS  Google Scholar 

  31. Song P, Mabrouk OS, Hershey ND, Kennedy RT (2012) In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Anal Chem 84:412–419. https://doi.org/10.1021/ac202794q

    Article  PubMed  CAS  Google Scholar 

  32. Yuan T-F, Huang H-Q, Gao L, Wang S-T, Li Y (2018) A novel and reliable method for tetrahydrobiopterin quantification: benzoyl chloride derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Free Radical Bio Med 118:119–125. https://doi.org/10.1016/j.freeradbiomed.2018.02.035

    Article  CAS  Google Scholar 

  33. Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim Acta 185:276. https://doi.org/10.1007/s00604-018-2820-8

    Article  CAS  Google Scholar 

  34. Hou XY, Huang W, Tong YK, Tian MM (2019) Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Microchim Acta 186. https://doi.org/10.1007/s00604-019-3801-2

  35. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li CR, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang YJ, Badran H, Grant J, Serra-Cayuela A, Liu YF, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  PubMed  CAS  Google Scholar 

  36. Yao J, Lu H, Wang Z, Wang T, Fang F, Wang J, Yu J, Gao R (2018) A sensitive method for the determination of the gender difference of neuroactive metabolites in tryptophan and dopamine pathways in mouse serum and brain by UHPLC-MS/MS. J Chromatogr B 1093-1094:91–99. https://doi.org/10.1016/j.jchromb.2018.06.054

    Article  CAS  Google Scholar 

  37. Eisenhofer G, Peitzsch M, McWhinney BC (2016) Impact of LC-MS/MS on the laboratory diagnosis of catecholamine-producing tumors. TrAC-Trend Anal Chem 84:106–116. https://doi.org/10.1016/j.trac.2016.01.027

    Article  CAS  Google Scholar 

  38. Erjavec GN, Konjevod M, Perkovic MN, Strac DS, Tudor L, Barbas C, Grune T, Zarkovic N, Pivac N (2018) Short overview on metabolomic approach and redox changes in psychiatric disorders. Redox Biol 14:178–186. https://doi.org/10.1016/j.redox.2017.09.002

    Article  CAS  Google Scholar 

  39. Lozupone M, La Montagna M, D’Urso F, Daniele A, Greco A, Seripa D, Logroscino G, Bellomo A, Panza F (2019) The role of biomarkers in psychiatry. In: Guest PC (ed) Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Springer International Publishing, Cham, pp 135–162

    Chapter  Google Scholar 

  40. Wang S-T, Li Y (2017) Development of a UPLC-MS/MS method for routine therapeutic drug monitoring of aripiprazole, amisulpride, olanzapine, paliperidone and ziprasidone with a discussion of their therapeutic reference ranges for Chinese patients. Biomed Chromatogr 31:e3928–e3n/a. https://doi.org/10.1002/bmc.3928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China support (21705121, 81572069, 81501815).

Funding

The authors declare no competing financial interest. And no color should be used for any figures in print.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ting Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that can have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, J., Sun, T., Peng, R. et al. LC-MS/MS determination of plasma catecholamines after selective extraction by borated zirconia. Microchim Acta 187, 165 (2020). https://doi.org/10.1007/s00604-020-4145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4145-7

Keywords

Navigation