Skip to main content

Advertisement

Log in

Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-sensing platform is proposed based on multi-walled carbon nanotubes/Prussian blue–functionalized polypyrrole nanowire array (PPY/MWCNTs/PB). Highly aligned PPY nanowire arrays were electrochemically prepared on the surface of glassy carbon electrodes, which were doped with MWCNTs/PB nanocomposites. The nanomaterial combines the characteristics of the PPY nanowires (high conductivity and large specific surface area) and MWCNTs/PB (excellent catalytic performance and intrinsic redox activity). Owing to the nanowire microstructure and outstanding electrical properties, the PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of hydrogen peroxide and facilitate the construction of a high-performance biosensing platform for microRNA (miRNA). A linear relationship between analytical signal and concentration of hydrogen peroxide and miRNA was obtained in the range 5 to 503 µM (1.4–5.1 mM) and 0.1 pM to 1 nM, and detection limits of 1.7 μM and 33.4 fM, respectively. This new supersensitive sensing platform has broad application prospects of biomolecule and other analyte determination in drug, biomedical, plant protection, and environmental analysis.

Graphical abstract

Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays (PPY/MWCNTs/PB) were prepared by a facile one-step electrochemical method. PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of H2O2 and facilitate the construction of a high-performance biosensing platform for microRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wanekaya AK, Chen W, Myung NV, Mulchandani AJE (2010) Nanowire-based Electrochemical Biosensors electroanalysis 18(6):533–550

  2. Jin C, Lu F, Cao X, Yang Z, Yang R (2013) Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. J Mater Chem A 1(39):12170

    Article  CAS  Google Scholar 

  3. Li Y, Li N, Ge J, Xue Y, Niu W, Chen MI, Du Y, Ma P X, Lei B (2019) Biodegradable thermal imaging-tracked ultralong nanowire-reinforced conductive nanocomposites elastomers with intrinsical efficient antibacterial and anticancer activity for enhanced biomedical application potential. Biomaterials 201:68–76

    Article  CAS  PubMed  Google Scholar 

  4. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10):2701–2716

    Article  CAS  PubMed  Google Scholar 

  5. Da CSCG, Tristan, De La Torre Medina J, Lemaitre M, Piraux LJNRL (2016) Magnetic and magnetoresistive properties of 3D interconnected NiCo nanowire networks. Nanoscale Res Lett 11(1):466

    Article  Google Scholar 

  6. Zhao Y, Liu B, Pan L, Yu GJE, Science E (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Nanoscale Res Lett 6(10):2856

    CAS  Google Scholar 

  7. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc 127(2):496–497

    Article  CAS  PubMed  Google Scholar 

  8. White HS, Kittlesen GP, Wrighton MS (1984) ChemInform abstract: chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J Am Chem Soc 15(51):5375–5377

    Article  Google Scholar 

  9. Lupu A, Lisboa P, Valsesia A, Colpo P, Rossi F (2009) Hydrogen peroxide detection nanosensor array for biosensor development. Sensors Actuators B Chem 137(1):56–61

    Article  Google Scholar 

  10. Huo W, Zhang X, Liu X, Liu H, Zhu Y, Zhang Y, Ji J, Dong F, Zhang Y (2020) Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage. Electrochim Acta 334:135635

    Article  CAS  Google Scholar 

  11. Tran HD, Shin K, Hong WG, D'Arcy JM, Kojima RW, Weiller BH, Kaner RB (2010) A template-free route to polypyrrole nanofibers. Macromol Rapid Commun 28(24):2289–2293

    Article  Google Scholar 

  12. Zang J, Li CM, Bao SJ, Cui X, Bao Q, Sun CQ (2008) Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network. Macromol Rapid Commun 41(19):7053–7057

    CAS  Google Scholar 

  13. Zhang X, Manohar SK (2004) Bulk synthesis of polypyrrole nanofibers by a seeding approach. J Am Chem Soc 126(40):12714–12715

    Article  CAS  PubMed  Google Scholar 

  14. Huang J, Kai W, Wei Z (2010) Conducting polymer nanowire arrays with enhanced electrochemical performance. J Mater Chem A 20:1117–1121

    Article  CAS  Google Scholar 

  15. Chen G, Wang H, Zhai W (2015) Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J Mater Chem C 3(8):1649–1654

    Article  Google Scholar 

  16. Husmann S, Zarbin AJG (2016) Design of a prussian blue analogue/carbon nanotube thin-film nanocomposite: tailored precursor preparation, synthesis, characterization, and application. Chem Eur J 22(19):6643–6653

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Hou C, Halder A, Ulstrup J, Chi Q (2017) Interlocked graphene-prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens Bioelectron 89(Part 1):570–577

    Article  CAS  PubMed  Google Scholar 

  18. Dempsey E, Diamond D, Biosensors A C J, Bioelectronics (2004) Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens Bioelectron 20(2):367–377

  19. Gholivand MB, Ahmadi E, Haseli M (2017) A novel voltammetric sensor for nevirapine, based on modified graphite electrode by MWCNs/poly(methylene blue)/gold nanoparticle. Anal Biochem 527:4–12

    Article  CAS  PubMed  Google Scholar 

  20. Komkova MA, Pasquarelli A, Andreev EA, Galushin AA, Karyakin AA (2020) Prussian blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochim Acta 339:135924

    Article  CAS  Google Scholar 

  21. Wang L, Tricard S, Cao L, Liang Y, Zhao J, Fang J, Shen W (2015) Prussian blue/1-butyl-3-methylimidazolium tetrafluoroborate-graphite felt electrodes for efficient electrocatalytic determination of nitrite. Sensors Actuators B Chem 214:70–75

    Article  CAS  Google Scholar 

  22. Cinti S, Cusenza R, Moscone D, Arduini F (2018) Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Talanta 187:59–60

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Li Y, Hong M, Bin Q, Lin Z, Lin Z, Cai Z, Chen GN (2013) Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification. Biosens Bioelectron 42:612–617

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Gu H, Yin F, Tu Y (2009) A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens Bioelectron 24(5):1527–1530

    Article  CAS  PubMed  Google Scholar 

  25. Ricci F, Amine A, Palleschi G, Biosensors DMJ (2003) Prussian blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18(2–3):165–174

    Article  CAS  PubMed  Google Scholar 

  26. Prem C. Pandey, Richa Singh, Yashashwa Pandey (2015) Controlled synthesis of functional Ag, Ag-Au/Au-Ag nanoparticles and their Prussian blue nanocomposites for bioanalytical applications. 7 5:49671–49679

  27. Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L (2017) Facile synthesis of a MoS2–prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl Mater Interfaces 9(14):12781

    Article  Google Scholar 

  28. Chen H, Zuo X, Su S, Tang Z, Wu A, Song S, Zhang D, Fan C (2008) An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst 133(9):1182–1186

    Article  CAS  PubMed  Google Scholar 

  29. Gaye B, Yunus Y, Aysun S, Tugba O, Okyay S (2017) Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron 91:728–733

    Article  Google Scholar 

  30. Afkhami A, Bahiraei A, Madrakian T (2016) Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater Sci Eng 59:168–176

    Article  CAS  Google Scholar 

  31. Hui Zhang MH, Chen P, Xie A, Shen Y (2016) 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J Alloys Compd 665:381–387

    Article  Google Scholar 

  32. Hu X, Chen J (2017) MCNTs@MnO2 Nanocomposite cathode integrated with Soluble O2-Carrier Co-salen in electrolyte for high-performance Li-air batteries. Nano Lett 17(3):2073–2078

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Xue L, Lu Y, Xia Y, Li Q (2020) Fabrication of polypyrrole/multi-walled carbon nanotubes composites as high performance electrodes for supercapacitors. J Electroanal Chem 862:114006

    Article  CAS  Google Scholar 

  34. Xing Y, Wu G, Ma Y, Yu Y, Yuan X, Zhu X (2019) Electrochemical detection of bisphenol B based on poly(Prussian blue)/carboxylated multiwalled carbon nanotubes composite modified electrode. Measurement 148:106940

    Article  Google Scholar 

  35. Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    Article  CAS  Google Scholar 

  37. Wang J, Hui N (2019) Electrochemical functionalization of polypyrrole nanowires for the development of ultrasensitive biosensors for detecting microRNA. Sensors Actuators B Chem 281:478–485

    Article  CAS  Google Scholar 

  38. Zhao J, Wu J, Li B, Du W, Huang Q, Zheng M, Xue H, Pang H (2016) Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Prog Nat Sci: Mater Int 26:237–242

    Article  CAS  Google Scholar 

  39. Jean L, Bredas G, Bryan S (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315

    Article  Google Scholar 

  40. Chen S, Bai B, Xu X, Hu N, Wang H, Suo Y (2019) Microbial synthesis of hollow porous Prussian blue@yeast microspheres and their synergistic enhancement of organic pollutant removal performance. RSC Adv 9(28):16258–16270

    Article  CAS  Google Scholar 

  41. Zeng H, Deng L, Shi Z, Luo J, Crittenden J (2019) Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation. J Mater Chem A 7(1):342–352

    Article  CAS  Google Scholar 

  42. Datta M, Datta A (1990) In situ FTIR and XPS studies of the hexacyanoferrate redox system. J Phys Chem 94(21):8203–8207

    Article  CAS  Google Scholar 

  43. Singh S, Pandey PC (2020) Synthesis and application of functional Prussian blue nanoparticles for toxic dye degradation. J Environ Chem Eng 8(3):103753

    Article  CAS  Google Scholar 

  44. Yu L, Zhao J, Tricard S, Wang Q, Fang J (2019) Efficient detection of ascorbic acid utilizing molybdenum oxide@Prussian blue/graphite felt composite electrodes. Electrochim Acta 322:134712

    Article  CAS  Google Scholar 

  45. Miodek A, Mejri-Omrani N, Khoder R, Korri-Youssoufi H (2016) Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: application to DNA biosensor. Talanta 154:446–454

    Article  CAS  PubMed  Google Scholar 

  46. Qi P, Yan W, Yang Y, Li Y, Fan Y, Chen J, Yang Z, Tu Q, Huang N (2015) Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface. Colloids Surf, B 126:70–79

    Article  CAS  Google Scholar 

  47. PeijinWang Q, Wang C, Xue Y, Wei M, Yuxin P, Mao Z, Zhang M (2019) Prussian blue functionalized partial reduced graphene oxide enhanced electrochemiluminescence of perylenetetracarboxylic acid for folic acid determination. J Electroanal Chem 848:113324

    Article  Google Scholar 

  48. Le T H, Kim Y,  Yoon H (2017) Electrical and electrochemical properties of ion conducting polymers. Polymers 9:150

  49. Chamjangali MA, Goudarzi N, Bagherian G, Reskety AA (2015) Development of a new electrochemical sensor for verapamil based on multi-walled carbon nanotube immobilized on glassy carbon electrode. Measurement 71:23–30

    Article  Google Scholar 

  50. Xu M, Luo X, Davis JJ (2013) The label free picomolar detection of insulin in blood serum. Biosens Bioelectron 39(1):21–25

    Article  CAS  PubMed  Google Scholar 

  51. Karyakin A A, Karyakina E E (1999) Prussian blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sensors Actuators B Chem 57(1–3):268–273

  52. Ma J, Zheng J (2020) Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets. Microchim Acta 187(7)

  53. Maryam H, Lida F, Morteza H, Mohammad RG (2018) Sensitive nonenzymatic electrochemiluminescence determination of hydrogen peroxide in dental products using a polypyrrole/polyluminol/titanium dioxide nanocomposite. Anal Lett:1–16

  54. Li Y, Liu X, Zeng X, Liu Y, Liu X, Wei W, Luo S (2009) Nonenzymatic hydrogen peroxide sensor based on a Prussian blue-modified carbon ionic liquid electrode. Microchim Acta 165:393–398

  55. Lê HQA, Chebil S, Makrouf B, Sauriat-Dorizon H, Mandrand B, Korri-Youssoufi H (2010) Effect of the size of electrode on electrochemical properties of ferrocene-functionalized polypyrrole towards DNA sensing. Talanta 81(4–5):1250–1257

    Article  PubMed  Google Scholar 

  56. Samuelson LA, Druy MA (1986) Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules 19(3):824–828

    Article  CAS  Google Scholar 

  57. IUPAC (1978) Nomenclature, symbols, units and their usage in spectrochemical analysis - II. Data interpretation. Pure Appl Chem 45(2):99–103

    Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (21705088), Shandong Key Laboratory of Biochemical Analysis (SKLBA2008), Shandong Province agricultural application technology innovation project (SD2019NJ001-2), and the Qingdao Agricultural University High-level Talent Project (663/1117025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ni Hui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, J., Lü, H. et al. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchim Acta 188, 25 (2021). https://doi.org/10.1007/s00604-020-04673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04673-1

Keywords

Navigation