Skip to main content

Advertisement

Log in

Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new ultrasensitive immunosensor is proposed based on the covalently attached anti-protein A antibody (IgY) on deposited gold nanoparticle (AuNP)-modified glassy carbon electrode (GCE) for the electrochemical measurement of Staphylococcus aureus (S. aureus). Chicken IgY as a capture antibody provides highly selective and specific binding to the target bacteria and selectively captures the S. aureus in its three-dimensional space. Due to that it can eliminate the interference from protein G-producing Streptococcus. In addition, the electron-transfer characteristic of [Fe(CN)6]4−/3− is hindered by this combination; as it is reflected on the electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves. The proposed immunosensor displays a wide linear dynamic range from 10 to 107 CFU mL−1 with a detection limit of 3.3 CFU mL−1 with RSD 3.0%. It is capable to accurately determine S. aureus in milk and human blood serum as a complex matrix sample with satisfactory recovery of ∼ 97–103%. The immunosensor also displays high selectivity over other bacteria and acceptable stability. Presumably, our study can be regarded as the first one to report chicken IgY in order to detect S. aureus based on an electrochemical method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Egyir B, Guardabassi L, Nielsen SS, Larsen J, Addo KK, Newman MJ, Larsen AR (2013) Prevalence of nasal carriage and diversity of Staphylococcus aureus among inpatients and hospital staff at Korle Bu Teaching Hospital, Ghana. J Glob Antimicrob Resist 1:189–193

    PubMed  Google Scholar 

  2. Goudarzi M, Goudarzi H, Figueiredo AMS et al (2016) Molecular characterization of methicillin resistant Staphylococcus aureus strains isolated from intensive care units in Iran: ST22-SCCmec IV/t790 emerges as the major clone. PLoS One 11:e0155529

    PubMed  PubMed Central  Google Scholar 

  3. Votintseva AA, Fung R, Miller RR, Knox K, Godwin H, Wyllie DH, Bowden R, Crook DW, Walker AS (2014) Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol 14:63

    PubMed  PubMed Central  Google Scholar 

  4. Loefdahl S, Guss B, Uhlen M et al (1983) Gene for staphylococcal protein A. Proc Natl Acad Sci 80:697–701

    CAS  Google Scholar 

  5. Sasso EH, Silverman GJ, Mannik M (1991) Human IgA and IgG F (ab’) 2 that bind to staphylococcal protein A belong to the VHIII subgroup. J Immunol 147:1877–1883

    CAS  PubMed  Google Scholar 

  6. Martiny D, Dediste A, Vandenberg O (2012) Comparison of an in-house method and the commercial Sepsityper™ kit for bacterial identification directly from positive blood culture broths by matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:2269–2281

    CAS  PubMed  Google Scholar 

  7. Hu L, Wang J, Yang X, Li J, Cui Q, Xu W, Liu J (2019) Determination of staphylococcus aureus mycoprotein by using ELISA based on oscillating chemical kinetic detection. Electrochim Acta 298:670–677

    CAS  Google Scholar 

  8. Nouri A, Ahari H, Shahbazzadeh D (2018) Designing a direct ELISA kit for the detection of Staphylococcus aureus enterotoxin A in raw milk samples. Int J Biol Macromol 107:1732–1737

    CAS  PubMed  Google Scholar 

  9. Wang H, Hecht S, Kline D, Leber AL (2019) Staphylococcus aureus and methicillin resistance detection directly from pediatric samples using PCR assays with differential cycle threshold values for corroboration of methicillin resistance. J Microbiol Methods 159:167–173

    CAS  PubMed  Google Scholar 

  10. Yoon J-H, Wei S, Oh D-H (2018) A highly selective enrichment broth combined with real-time PCR for detection of Staphylococcus aureus in food samples. LWT 94:103–110

    CAS  Google Scholar 

  11. Xu J, Hu Y, Guo J, Yang Y, Qiu J, Li X, Xin Z (2019) A loop-mediated isothermal amplification integrated G-quadruplex molecular beacon (LAMP-GMB) method for the detection of Staphylococcus aureus in food. Food Anal Methods 12:422–430

    Google Scholar 

  12. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    CAS  PubMed  Google Scholar 

  13. Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168

    CAS  PubMed  Google Scholar 

  14. Zhao Y, Xia D, Ma P et al (2019) Advances in the detection of virulence genes of Staphylococcus aureus originate from food. Food Sci Human Wellness 9:40–44

    Google Scholar 

  15. Ranjbar S, Shahrokhian S (2018) Design and fabrication of an electrochemical aptasensor using au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 123:70–76

    CAS  PubMed  Google Scholar 

  16. Purwidyantri A, Chen C-H, Hwang B-J, Luo JD, Chiou CC, Tian YC, Lin CY, Cheng CH, Lai CS (2016) Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor. Biosens Bioelectron 77:1086–1094

    CAS  PubMed  Google Scholar 

  17. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155

    CAS  PubMed  Google Scholar 

  18. Han D, Yan Y, Wang J, Zhao M, Duan X, Kong L, Wu H, Cheng W, Min X, Ding S (2019) An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS2-PtNPs-vancomycin to S2O82−/O2 system. Sensors Actuators B Chem 288:586–593

    CAS  Google Scholar 

  19. Ward AC, Hannah AJ, Kendrick SL, Tucker NP, MacGregor G, Connolly P (2018) Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy. Biosens Bioelectron 110:65–70

    CAS  PubMed  Google Scholar 

  20. Abi A, Mohammadpour Z, Zuo X, Safavi A (2018) Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 102:479–489

    CAS  PubMed  Google Scholar 

  21. Zhang Y, Tan W, Zhang Y, Mao H, Shi S, Duan L, Yu J (2019) Ultrasensitive and selective detection of Staphylococcus aureus using a novel IgY-based colorimetric platform. Biosens Bioelectron 142:111570

    CAS  PubMed  Google Scholar 

  22. Gonzalez CD, Ledo C, Cela E et al (2019) The good side of inflammation: Staphylococcus aureus proteins SpA and Sbi contribute to proper abscess formation and wound healing during skin and soft tissue infections. Biochim Biophys Acta (BBA) - Mol Basis Dis 1865:2657–2670

    CAS  Google Scholar 

  23. Jin W, Yamada K, Ikami M, Kaji N, Tokeshi M, Atsumi Y, Mizutani M, Murai A, Okamoto A, Namikawa T, Baba Y, Ohta M (2013) Application of IgY to sandwich enzyme-linked immunosorbent assays, lateral flow devices, and immunopillar chips for detecting staphylococcal enterotoxins in milk and dairy products. J Microbiol Methods 92:323–331

    CAS  PubMed  Google Scholar 

  24. Reddy PK, Shekar A, Kingston JJ, Sripathy MH, Batra H (2013) Evaluation of IgY capture ELISA for sensitive detection of alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J Immunol Methods 391:31–38

    CAS  PubMed  Google Scholar 

  25. Ateş AK, Er E, Çelikkan H, Erk N (2019) The fabrication of a highly sensitive electrochemical sensor based on AuNPs@ graphene nanocomposite: application to the determination of antidepressant vortioxetine. Microchem J 148:306–312

    Google Scholar 

  26. Alim S, Vejayan J, Yusoff MM, Kafi AKM (2018) Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens Bioelectron 121:125–136

    CAS  PubMed  Google Scholar 

  27. Roushani M, Ghanbari K, Hoseini SJ (2018) Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic. Microchem J 141:96–103

    CAS  Google Scholar 

  28. Shahdost-fard F, Roushani M (2017) Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@ fullerene composite and an aptamer-imprinted polydopamine. Microchim Acta 184:3997–4006

    CAS  Google Scholar 

  29. Lee G, Lee H, Nam K, Han JH, Yang J, Lee S, Yoon D, Eom K, Kwon T (2012) Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups. Nanoscale Res Lett 7:608

    PubMed  PubMed Central  Google Scholar 

  30. Roushani M, Shahdost-fard F (2019) Applicability of AuNPs@ N-GQDs nanocomposite in the modeling of the amplified electrochemical ibuprofen aptasensing assay by monitoring of riboflavin. Bioelectrochemistry 126:38–47

    CAS  PubMed  Google Scholar 

  31. Pauly D, Chacana PA, Calzado EG, et al (2011) IgY technology: extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. J Vis Exp e3084

  32. Bai J, Ndamanisha JC, Liu L, Yang L, Guo L (2010) Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J Solid State Electrochem 14:2251–2256

    CAS  Google Scholar 

  33. Miao T, Wang Z, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172:431–437

    CAS  Google Scholar 

  34. Wu Y, Wang M, Ouyang H, He Y, Zhao X, Fu Z (2018) Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase. Microchim Acta 185:391

    Google Scholar 

  35. Suaifan GARY, Al Nobani SWA, Shehadeh MB, Darwish RM (2019) Engineered colorimetric detection of Staphylococcus aureus extracellular proteases. Talanta 198:30–38

    CAS  PubMed  Google Scholar 

  36. Xiong J, Wang W, Fu Z (2017) Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles. Microchim Acta 184:4197–4202

    CAS  Google Scholar 

  37. Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q (2020) An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 212:120797

    CAS  PubMed  Google Scholar 

  38. He F, Ren J, Liu Z (2007) The study and application of a new IDE–PQC sensor. Sensors Actuators B Chem 123:1057–1063

    CAS  Google Scholar 

  39. Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX (2012) Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron 31:226–232

    PubMed  Google Scholar 

  40. Yue H, Zhou Y, Wang P, Wang X, Wang Z, Wang L, Fu Z (2016) A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein a. Talanta 153:401–406

    CAS  PubMed  Google Scholar 

  41. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3, 3-dithiodipropionic acid di (N-succinimidyl ester)-modified gold electrodes. Talanta 77:876–881

    Google Scholar 

  42. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Immunosensor for the determination of Staphylococcus aureus using a tyrosinase–mercaptopropionic acid modified electrode as an amperometric transducer. Anal Bioanal Chem 391:837–845

    PubMed  Google Scholar 

  43. Majumdar T, Chakraborty R, Raychaudhuri U (2013) Development of PEI-GA modified antibody based sensor for the detection of S. aureus in food samples. Food Biosci 4:38–45

    CAS  Google Scholar 

  44. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2007) Development of an amperometric immunosensor for the quantification of Staphylococcus aureus using self-assembled monolayer-modified electrodes as immobilization platforms. Electroanal Int J Devoted Fundam Pract Asp Electroanal 19:1476–1482

    Google Scholar 

  45. Tan F, Leung PHM, Liu Z, Zhang Y, Xiao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157: H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sensors Actuators B Chem 159:328–335

    CAS  Google Scholar 

  46. Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2:417–426

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bekir K, Barhoumi H, Braiek M, Chrouda A, Zine N, Abid N, Maaref A, Bakhrouf A, Ouada HB, Jaffrezic-Renault N, Mansour HB (2015) Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environ Sci Pollut Res 22:15796–15803

    CAS  Google Scholar 

  48. Jia F, Duan N, Wu S, Ma X, Xia Y, Wang Z, Wei X (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

All experimental protocols were approved by the local Animal Experimentation Ethics Committee of Kerman University (Code: IR. UK. VETMED. REC.1399.008). The human blood serum samples were provided from a local clinical laboratory. Informed consent was obtained from all participants included in the study.

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Rahmati, Z., Golchin, M. et al. Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles. Microchim Acta 187, 567 (2020). https://doi.org/10.1007/s00604-020-04547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04547-6

Keywords

Navigation