Skip to main content
Log in

Synthesis of ZnO@poly-o-methoxyaniline nanosheet composite for enhanced NH3-sensing performance at room temperature

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Poly-o-methoxyaniline (POMA) and zinc oxide (ZnO) composites were prepared via in situ polymerization and characterized by thermogravimetry thermal analysis, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and N2 sorption measurement. The composites show different morphology when the ratio of POMA and ZnO varies. At a ratio of 2:2, the composite shows thinner nanosheet structure with smooth surface and exhibits best response to NH3 at room temperature. The ZnO@POMA nanosheet sensor shows good selectivity and a wide response range (linear ranges from 0.05-1 pmm and 10-100 ppm of NH3). The lowest detection limit reaches 0.05 ppm. The sensor exhibits good reversibility. Based on the testing results of ultraviolet diffuse reflection spectroscopy and Kelvin probe technique, the adsorption and desorption of NH3 molecules on the sensing material and the formation of p-n heterostructure between ZnO and POMA and their synergistic effects are further explained. More importantly, the sensor possessed excellent moisture resistance. The overall test results of ZnO@POMA show that the sensor has good practical applicability for detecting trace NH3 at room temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1:225–255

    Article  Google Scholar 

  2. Zhu H, Peng S, Jiang W (2013) Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes. Sci World J 2013:940153

    Google Scholar 

  3. Tabar FA, Nikfarjam A, Tavakoli N, Gavgani JN, Mahyari M, Hosseini SG (2020) Chemical-resistant ammonia sensor based on polyaniline/CuO nanoparticles supported on three-dimensional nitrogen-doped graphene-based framework nanocomposites. Microchimica Acta. 187: 10.1007/s00604-020-04282-y

  4. Tian JF, Yang G, Jiang DG, Su FF, Zhang ZH (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183:2871–2878

    Article  CAS  Google Scholar 

  5. Zhang YJ, Zhang JX, Jiang YD, Duan ZH, Liu BH, Zhao QN, Wang S, Yuan Z, Tai HL (2020) Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sensors Actuators B Chem DOI: https://doi.org/10.1016/j.snb.2020.128293

  6. Wang S, Tai HL, Liu BH, Duan ZH, Yuan Z, Pan H, Su YJ, Xie GZ, Du XS, Jiang YD (2019) A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 58:312–321

    Article  CAS  Google Scholar 

  7. Khan A, Khan AAP, Rahman MM, Asiri AM, Inamuddin K, Alamry A, Hameed SA (2018) Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing. Applied Surface Science 433:696–704

    Article  CAS  Google Scholar 

  8. Karim MR, Alam MM, Aijaz MO, Asiri AM, AlMubaddel FS, Rahman MM (2020) The fabrication of a chemical sensor with PANI-TiO2 nanocomposites. RSC Adv 10:12224–12233

    Article  CAS  Google Scholar 

  9. Khan A, Khan AAP, Rahman MM, Asiri AM (2016) High performance polyaniline/vanadyl phosphate (PANI-VOPO4) nano composite sheets prepared by exfoliation/intercalation method for sensing applications. Eur Polym J 75:388–398

    Article  CAS  Google Scholar 

  10. Khan SB, Rahman MM, Jang ES, Akhtar K, Han H (2011) Special susceptive aqueous ammonia chemi-sensor: extended applications of novel UV-curable polyurethane-clay nanohybrid. Talanta. 84:1005–1010

    Article  CAS  Google Scholar 

  11. Hussein MA, Alam MM, Aly KI, Khan A, Džudžević-Čančar H, Asiri AM, Rahman MM (2020) Hybrid poly (ether-arylidene-ether-sulphone) s derivatives for divalent cobalt ion detection. SN Applied Sciences 2:774

    Article  CAS  Google Scholar 

  12. Karim MR, Alam MM, Aijaz MO, Asiri AM, Dar MA, Rahman MM (2019) Fabrication of 1, 4-dioxane sensor based on microwave assisted PAni-SiO2 nanocomposites. Talanta. 193:64–69

    Article  CAS  Google Scholar 

  13. Knight RL, Kadlec RH, Ohlendorf HM (1999) The use of treatment wetlands forpetroleum industry effluents. Environ Sci Technol 33:973–980

    Article  CAS  Google Scholar 

  14. Fedoruk MJ, Bronstein R, Kerger BD (2005) Ammonia exposure and hazard assessment for selected household cleaning product uses. J Expo Anal Environ Epidemiol 15:534–544

    Article  CAS  Google Scholar 

  15. Yamulki S, Harrison RM, Goulding KWT (1996) Ammonia surface-exchange abovean agricultural field in southeast England. Atmos Environ 30:109–118

    Article  CAS  Google Scholar 

  16. Apsimon HM, Barker BM, Kayin S (1967) Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes. Atmos Environ 21:1939–1946

    Article  Google Scholar 

  17. Chuang MY, Chen CC, Zan HW, Meng HF, Lu CJ (2017) Organic gas sensor with an improved lifetime for detecting breath ammonia in hemodialysis patients. ACS Sens 2:1788–1795

    Article  CAS  Google Scholar 

  18. Tai HL, Wang S, Duan ZH, Jiang YD (2020) Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sensors Actuators B Chem 318:128104

    Article  CAS  Google Scholar 

  19. Tai HL, Duan ZH, Wang Y, Wang S, Jiang YD (2020) Paper-based sensors for gas, humidity and strain detections: a review. ACS Applied Materials & Interfaces 12:31037–31053

    Article  CAS  Google Scholar 

  20. Tai HL, Duan ZH, He ZZ, Li X, Xu JL, Liu BH, Jiang YD (2019) Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sensors Actuators B Chem 298:126874

    Article  CAS  Google Scholar 

  21. Rahman MM, Balkhoyor HB, Asiri AM, Marwani HM (2016) A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia. Microchim Acta 183:1677–1685

    Article  CAS  Google Scholar 

  22. Li Y, Jiao MF, Zhao HJ, Yang MJ (2018) High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sensors Actuators B Chem 264:285–295

    Article  CAS  Google Scholar 

  23. Tsai CH, Huang WC, Hsu YC, Shih CJ, Teng IJ, Yu YH (2016) Poly(o-methoxyaniline) doped with an organic acid as cost-efficient counter electrodes for dye-sensitized solar cells. Electrochim Acta 213:791–801

    Article  CAS  Google Scholar 

  24. Diniz MO, Golin AF, Santos MC, Bianchi RF, Guerra EM (2019) Improving performance of polymer-based ammonia gas sensor using POMA/V2O5 hybrid films. Org Electron 67:215–221

    Article  CAS  Google Scholar 

  25. Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21:2989–2996

    Article  CAS  Google Scholar 

  26. Gao R, Gao S, Wang P, Xu YM, Zhang XF, Cheng XL, Zhou X, Major Z, Zhu HY, Huo LH (2020) Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors & Actuators: B Chemical 303:127085

    Article  CAS  Google Scholar 

  27. Navale ST, Khuspe GD, Chougule MA, Patil VB (2014) Room temperature NO2 gas sensor based on PPy/α-Fe2O3 hybrid nanocomposites. Ceram Int 40:8013–8020

    Article  CAS  Google Scholar 

  28. Fayemi OE, Adekunle AS, Swamy BEK, Ebenso EE (2018) Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode. J Electroanal Chem 818:236–249

    Article  CAS  Google Scholar 

  29. Singh R, Choudhary RB, Kandulna R (2018) Delocalization of p electrons and trapping action of ZnO nanoparticles in PPY matrix for hybrid solar cell application. J Mol Struct 1156:633–644

    Article  CAS  Google Scholar 

  30. Zhu GT, Zhang QP, Xie GZ, Su YJ, Zhao K, Du HF, Jiang YD (2016) Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature. Chem Phys Lett 665:147–152

    Article  CAS  Google Scholar 

  31. Talwar V, Singh O, Singh RC (2014) ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sensors Actuators B Chem 191:276–282

    Article  CAS  Google Scholar 

  32. Andre RS, Shimizu FM, Miyazaki CM, Jr AR, Manzani D, Ribeiro SJL, O NO Jr, Mattoso LHC (2017) Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensors Actuators B Chem 238:795–801

  33. Das M, Sarkar D (2017) One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram Int 43:11123–11131

    Article  CAS  Google Scholar 

  34. Ting CY, Wu PL, Huang CC, Su CY, Tsai YC, Flexible ammonia sensor integrated with polyaniline/zinc oxide/graphene composite membrane materials, Japanese Journal Of Applied Physics. 59 (2020) SIID04

  35. Zoshki A, Rahmani MB, Masdarolomoor F, Pilehrood SH (2019) Surface functionalization of PANI and PANI/ZnO hybrid nanofibers with metallic catalysts for ammonia sensing at room temperature. Modern Physics Letters B 33:1950175

    Article  CAS  Google Scholar 

  36. Gaikwad G, Patil P, Patil D, Naik J (2017) Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater Sci Eng B 218:14–22

    Article  CAS  Google Scholar 

  37. Li Y, Jiao MF, Yang MJ (2017) In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids. Sensors Actuators B 238:596–604

    Article  CAS  Google Scholar 

  38. Du HY, Wang J, Qiao Q, Sun YH, Shao Q, Li XG (2015) Synthesis and characterization of ZnO/PPy hetero-nanocomposites and their gas sensing properties. Acta Phys -Chim Sin 31:800–806

    Article  CAS  Google Scholar 

  39. Joulazadeh M, Navarchian AH (2015) Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 210:404–411

    Article  CAS  Google Scholar 

  40. Yu TT, Cheng XL, Zhang XF, Sui LL, Xu YM, Gao S, Zhao H, Huo LH (2015) Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. J Mater Chem A 3:11991–11999

    Article  CAS  Google Scholar 

  41. Li SQ, Liu A, Yang ZJ, Zhao LP, Wang J, Liu FM, You R, He JM, Wang CL, Yan X, Sun P, Liang XS, Lu GY (2019) Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device. Sensors & Actuators: B Chemical 289:252–259

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21771060, 61271126, and 21305033), the International Science & Technology Cooperation Program of China (2016YFE0115100), Heilongjiang Educational Department (RCYJTD201903), Heilongjiang Touyan Innovation Team Program, the Basic Research Business Fees of Colleges and Universities in Heilongjiang Province (Grant No. 2018-KYYWF-1292), and Heilongjiang University Graduate Innovative Research Project (YJSCX2020-018HLJU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingming Xu or Lihua Huo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Zhu, H., Gao, S. et al. Synthesis of ZnO@poly-o-methoxyaniline nanosheet composite for enhanced NH3-sensing performance at room temperature. Microchim Acta 187, 510 (2020). https://doi.org/10.1007/s00604-020-04513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04513-2

Keywords

Navigation