Skip to main content
Log in

Microscale reactor embedded with Graphene/hierarchical gold nanostructures for electrochemical sensing: application to the determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An integrated electrochemical sensing platform is presented, in which stable graphene nanosheets are entrapped within hierarchical gold nano/micro islands (NMI) for the selective detection of dopamine. The fabrication method, which combines lithography, electrodeposition and liquid exfoliation, results in a microscale fluidic reactor capable of handling small volumes (10 μl) of sample. This configuration has advantageous properties, including enhanced sensitivity towards current responses from redox reaction of dopamine to dopamine orthoquinone. The NMIs‘spatial orientation inhibits the agglomeration of graphene, while their nanostructured interface enhances adhesion to graphene nanosheets. In turn, this leads to an enlarged surface and to an accumulation of free electrons on the electrode surface. The superior electrocatalytic activity for dopamine is attributed to the high density of π-electrons on graphene nanosheets. In addition, the selectivity of the assay in the presence of other interferents is assumed to be a result of the sp2 π-interactions between the negatively charged graphene layer and the aromatic rings of dopamine. At a working potential of 0.15 V vs Ag/AgCl, the assay has a detection limit of 1.13 nM, a linear range of 1 nM- 100 μM, and apparent recoveries of 106% in spiked synthetic urine.

Schematic presentation of an integrated electrochemical sensing platform, in which stable graphene nanosheets are entrapped within hierarchical gold nano/micro islands (NMI) for selective detection of dopamine. Platinum (Pt) wire and Silver/Silver-Chloride (Ag/AgCl) were used as counter and reference electrode, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gale JD, Geim AK, Novoselov KS et al (2012) The rise of graphene. Rev Mod Phys 58:710–734. https://doi.org/10.1016/j.jmps.2010.02.008

    Article  CAS  Google Scholar 

  2. Zhao G, Li X, Huang M et al (2017) The physics and chemistry of graphene-on-surfaces. Chem Soc Rev 46:4417–4449. https://doi.org/10.1039/c7cs00256d

    Article  CAS  PubMed  Google Scholar 

  3. Tang Y, Liu X, Zheng H et al (2018) A photoelectrochemical aptasensor for aflatoxin B1 detection based on an energy transfer strategy between Ce-TiO 2 @MoSe 2 and au nanoparticles. Nanoscale 11:31178–31185. https://doi.org/10.1039/C9NR01960J

    Article  Google Scholar 

  4. Huang X, Shi W, Bao N et al (2019) Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine. Microchim Acta 186:310. https://doi.org/10.1007/s00604-019-3408-7

    Article  CAS  Google Scholar 

  5. Mahshid S, Mepham AH, Mahshid SS et al (2016) Mechanistic control of the growth of three-dimensional gold sensors. J Phys Chem C 120:21123–21132. https://doi.org/10.1021/acs.jpcc.6b05158

    Article  CAS  Google Scholar 

  6. De Luna P, Mahshid SS, Das J et al (2017) High-curvature Nanostructuring enhances probe display for biomolecular detection. Nano Lett 17:1289–1295. https://doi.org/10.1021/acs.nanolett.6b05153

    Article  CAS  PubMed  Google Scholar 

  7. Tesch J, Leicht P, Blumenschein F et al (2016) Structural and electronic properties of graphene nanoflakes on Au ( 111 ) and Ag (111). Sci Rep 6:23439–23447. https://doi.org/10.1038/srep23439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jalali M, AbdelFatah T, Mahshid SS et al (2018) Hierarchical 3D nanostructured microfluidic device for sensitive detection of pathogenic bacteria. Small 1801893:1–15. https://doi.org/10.1002/smll.201801893

    Article  CAS  Google Scholar 

  9. AbdelFatah T, Jalali M, Mahshid S (2018) A nanofilter for fluidic devices by pillar- assisted self-assembly microparticles. Biomicrofluidics 12(6):064103–064113. https://doi.org/10.1063/1.5048623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19. https://doi.org/10.1007/s00604-011-0639-7

    Article  CAS  Google Scholar 

  11. Wang Z, Yue HY, Huang S et al (2019) Gold nanoparticles anchored onto three-dimensional graphene: simultaneous voltammetric determination of dopamine and uric acid. Microchim Acta 186:573–580. https://doi.org/10.1007/s00604-019-3663-7

    Article  CAS  Google Scholar 

  12. Deepika J, Sha R, Badhulika S (2019) A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186:480–489. https://doi.org/10.1007/s00604-019-3622-3

    Article  CAS  Google Scholar 

  13. Rangel-Barajas C, Coronel I, Florán B (2015) Dopamine receptors and Neurodegeneration. Aging and disease 6:349-368. https://doi.org/10.14336/AD.2015.0330

    Article  Google Scholar 

  14. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  15. Pagán FL (2012) Improving outcomes through early diagnosis of Parkinson’s disease. Am J Manag Care 18:176–182 Accessed 15 Sep 2018. https://europepmc.org/abstract/MED/23039866

    Google Scholar 

  16. Huang H, Yue Y, Chen Z et al (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO 4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189–197 https://10.1007/s00604-019-3299-7

    Article  Google Scholar 

  17. Fan X, Xu Y, Sheng T et al (2019) Amperometric sensor for dopamine based on surface-graphenization pencil graphite electrode prepared by in-situ electrochemical delamination. Microchim Acta 186:324–331. https://doi.org/10.1007/s00604-019-3430-9

    Article  CAS  Google Scholar 

  18. Zhao P, Chen C, Ni M et al (2019) Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Microchim Acta 186:134–142. https://doi.org/10.1007/s00604-019-3238-7

    Article  CAS  Google Scholar 

  19. Chen X, Li D, Ma W et al (2019) Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid. Microchim Acta 186:407–420. https://doi.org/10.1007/s00604-019-3518-2

    Article  CAS  Google Scholar 

  20. Soltani N, Tavakkoli N, Shahdost-fard F et al (2019) A carbon paste electrode modified with Al2O3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Microchim Acta 186:540–552. https://doi.org/10.1007/s00604-019-3541-3

    Article  CAS  Google Scholar 

  21. Hielscher Kathrin (2014) Ultrasonically assisted preparation of graphene. Hielscher Ultrasonic 1–9. Accessed 01 Oct 2018. http://laboratorytalk.com/article/404342/ultrasonically-assis

  22. Gu W, Zhang W, Li X et al (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369. https://doi.org/10.1039/b904093p

    Article  CAS  Google Scholar 

  23. Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89:167–186. https://doi.org/10.1016/j.bios.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  25. Gao F, Cai X, Wang X et al (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B Chem 186:380–387. https://doi.org/10.1016/j.snb.2013.06.020

    Article  CAS  Google Scholar 

  26. Liu K, Wei J, Wang C (2011) Sensitive detection of rutin based on β-cyclodextrin@chemically reduced graphene/Nafion composite film. Electrochim Acta 56:5189–5194. https://doi.org/10.1016/j.electacta.2011.03.042

    Article  CAS  Google Scholar 

  27. Hau NY, Yang P, Liu C et al (2017) Aminosilane-assisted Electrodeposition of gold Nanodendrites and their catalytic properties. Sci Rep 7:39839. https://doi.org/10.1038/srep39839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jong Min Yuk, Jungwon Park, Michael F. Crommie, Jeong Yong Lee, A. Zettl APA (2012) High-resolution EM of colloidal Nanocrystal growth using Graphene liquid cells. Science 61–64. https://doi.org/10.1126/science.1217654, 336

    Article  CAS  Google Scholar 

  29. Chu K, Wang F, Lin ZX et al (2017) Electrochemical dopamine sensor based on P-doped graphene: highly active metal-free catalyst and metal catalyst support. Mater Sci Eng C 81:452–458. https://doi.org/10.1016/j.msec.2017.08.053

    Article  CAS  Google Scholar 

  30. Tse DCS, McCreery RL, Adams RN (1976) Potential oxidative pathways of brain Catecholamines. J Med Chem 19:37–40. https://doi.org/10.1021/jm00223a008

    Article  CAS  PubMed  Google Scholar 

  31. Laviron E, Roullier L (1980) General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes Journal of Electroanalytical Chemistry 115:65–74. https://doi.org/10.1016/S0022-0728(80)80496-7

    Article  CAS  Google Scholar 

  32. Lawal AT (2018) Biosensors and bioelectronics Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 106:149–178. https://doi.org/10.1016/j.bios.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Tang Q (2015) Improved sensing of dopamine and ascorbic acid using a glassy carbon electrode modified with electrochemically synthesized nickel-cobalt hexacyanoferrate microparticles deposited on graphene. Microchim Acta 182:671–677. https://doi.org/10.1007/s00604-014-1371-x

    Article  CAS  Google Scholar 

  34. Zheng Y, Huang Z, Zhao C et al (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180:537–544. https://doi.org/10.1007/s00604-013-0964-0

    Article  CAS  Google Scholar 

  35. Li S-J, Deng D-H, Shi Q, Liu S-R (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325–331. https://doi.org/10.1007/s00604-012-0782-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Faculty of Engineering at McGill University, Natural Science and Engineering Research Council of Canada (NSERC, G247765) and Canada Foundation for Innovation (CFI, G248924) for financial support. The authors acknowledge Nanotools-Microfab and the Facility for Electron Microscopy Research at McGill University and the research facilities of NanoQAM at the Université du Québec à Montréal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Mahshid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, M., Filine, E., Dalfen, S. et al. Microscale reactor embedded with Graphene/hierarchical gold nanostructures for electrochemical sensing: application to the determination of dopamine. Microchim Acta 187, 90 (2020). https://doi.org/10.1007/s00604-019-4059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4059-4

Keywords

Navigation