Skip to main content
Log in

A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is described for the simultaneous voltammetric determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). An indium-tin oxide (ITO) electrode was modified with a hierarchical core−shell metal-organic framework and Ag-doped mesoporous metal-oxide based hybrid nanocomposites on g-C3N4 nanosheets. The morphology, structural and chemical composition of the hybrid nanocomposite was characterized using different analytical methods. The modified ITO showed superior electrocatalytic performance towards the oxidation of AA, DA and UA due to the enhanced surface area, synergistic effects and well-organized porous assembly. Figures of merit, include (a) linear responses from 0.1 to 200 μM, 2.5 to 100 μM and 2.5 to 625 μM; (b) detection limits (at S/N = 3) of 0.02, 0.01 and 0.06 μM, and (c) well separated oxidation peaks near −50, 186 and 390 mV (vs. Ag/AgCl) for simultaneous sensing AA, DA and UA, respectively. The sensor was evaluated by analysing spiked serum samples and gave data with precision, with recoveries of >98%.

Schematic Representation of a Mesoporous Silver-doped TiO2-SnO2 Nanocomposite (h-ATS) on g-C3N4 Nanosheets and Decorated with a Hierarchical Core−Shell Metal-Organic Framework (NC@GC) Based Electrochemical Sensor for Simultaneous Voltammetric Detection of Ascorbic acid, Dopamine and Uric acid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tang J, Jiang S, Liu Y, Zheng S, Bai L, Guo J, Wang J (2018) Electrochemical determination of dopamine and uric acid using a glassy carbon electrode modified with a composite consisting of a Co(II)-based metalorganic framework (ZIF-67) and graphene oxide. Microchim Acta 185:486. https://doi.org/10.1007/s00604-018-3025-x

    Article  CAS  Google Scholar 

  2. Xing P, Wu D, Chen J, Song J, Mao C, Gao Y, Niu H (2019) A Cd-MOF as a fluorescent probe for highly selective, sensitive and stable detection of antibiotics in water. Analyst 144:2656–2661. https://doi.org/10.1039/C8AN02442A

    Article  CAS  PubMed  Google Scholar 

  3. Li B, Ma JG, Cheng P (2018) Silica-protection-assisted encapsulation of Cu 2 O Nanocubes into a metal-organic framework (ZIF-8) to provide a composite catalyst. Angew Chem Int Ed 57:6834–6837. https://doi.org/10.1002/anie.201801588

    Article  CAS  Google Scholar 

  4. Zheng YY, Li CX, Ding XT, Yang Q, Qi YM, Zhang HM, Qu LT (2017) Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin Chem Lett 28:1473–1478. https://doi.org/10.1016/j.cclet.2017.03.014

    Article  CAS  Google Scholar 

  5. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of Core–Shell metal–organic frameworks: a new method for selectively functionalized Nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  PubMed  Google Scholar 

  6. Nasir T, Herzog G, Hébrant M, Despas C, Liu L, Walcarius A (2018) Mesoporous silica thin films for improved electrochemical detection of Paraquat. ACS Sensors 3:484–493. https://doi.org/10.1021/acssensors.7b00920

    Article  CAS  PubMed  Google Scholar 

  7. Weng Y, Zhang L, Zhu W, Lv Y (2015) One-step facile synthesis of coral-like Zn-doped SnO2 and its cataluminescence sensing of 2-butanone. J Mater Chem A 3:7132–7138. https://doi.org/10.1039/C5TA00495K

    Article  CAS  Google Scholar 

  8. Jothi L, Neogi S, Kumar JS, Nageswaran G (2018) Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons. Biosens Bioelectron 105:236–242. https://doi.org/10.1016/j.bios.2018.01.040

    Article  PubMed  Google Scholar 

  9. Rana L, Gupta R, Tomar M, Gupta V (2018) Highly sensitive love wave acoustic biosensor for uric acid. Sensors Actuators B Chem 261:169–177. https://doi.org/10.1016/j.snb.2018.01.122

    Article  CAS  Google Scholar 

  10. Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosens Bioelectron 109:237–245. https://doi.org/10.1016/j.bios.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  11. Bhardwaj SK, Chauhan R, Yadav P, Ghosh S, Mahapatro AK, Singh J, Basu T (2019) Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater Sci 7:1598–1606. https://doi.org/10.1039/C8BM01406J

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj SK, Yadav P, Ghosh S, Basu T, Mahapatro AK (2016) Biosensing test-bed using electrochemically deposited reduced Graphene oxide. ACS Appl Mater Interfaces 8:24350–24360. https://doi.org/10.1021/acsami.6b04562

    Article  CAS  PubMed  Google Scholar 

  13. Yang H, Zhao J, Qiu M, Sun P, Han D, Niu L, Cui G (2019) Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens Bioelectron 124–125:191–198. https://doi.org/10.1016/j.bios.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  14. Abdelwahab AA, Shim YB (2015) Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors Actuators B Chem 221:659–665. https://doi.org/10.1016/j.snb.2015.07.016

    Article  CAS  Google Scholar 

  15. Chitravathi S, Swamy BEK, Mamatha GP, Sherigara BS (2011) Simultaneous electrochemical determination of dopamine and ascorbic acid using poly (l-serine) modified carbon paste electrode. J Mol Liq 160:193–199. https://doi.org/10.1016/j.molliq.2011.03.019

    Article  CAS  Google Scholar 

  16. Reddy S, Kumara Swamy BE, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. https://doi.org/10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

  17. Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92. https://doi.org/10.1007/s00604-018-3222-7

    Article  CAS  Google Scholar 

  18. Tavakolian E, Tashkhourian J (2018) Sonication-assisted preparation of a nanocomposite consisting of reduced graphene oxide and CdSe quantum dots, and its application to simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 185:456–458. https://doi.org/10.1007/s00604-018-2988-y

    Article  CAS  Google Scholar 

  19. Yola ML, Eren T, Atar N (2016) A molecular imprinted Voltammetric sensor based on carbon nitride nanotubes: application to determination of melamine. J Electrochem Soc 163:B588–B593. https://doi.org/10.1149/2.0311613jes

    Article  CAS  Google Scholar 

  20. Tomer VK, Devi S, Malik R, Nehra SP, Duhan S (2016) Fast response with high performance humidity sensing of Ag–SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater 219:240–248. https://doi.org/10.1016/j.micromeso.2015.08.016

    Article  CAS  Google Scholar 

  21. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974. https://doi.org/10.1126/science.aaa3145

    Article  CAS  PubMed  Google Scholar 

  22. Zeng D, Wu P, Ong WJ, Tang B, Wu M, Zheng H, Chen Y, Peng DL (2018) Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Appl Catal B Environ 233:26–34. https://doi.org/10.1016/j.apcatb.2018.03.102

    Article  CAS  Google Scholar 

  23. Li PP, Liu XP, Mao CJ, Jin BK, Zhu JJ (2019) Photoelectrochemical DNA biosensor based on g-C3N4/MoS2 2D/2D heterojunction electrode matrix and co-sensitization amplification with CdSe QDs for the sensitive detection of ssDNA. Anal Chim Acta 1048:42–49. https://doi.org/10.1016/j.aca.2018.09.063

    Article  CAS  PubMed  Google Scholar 

  24. Shu Y, Chen J, Xu Z, Jin D, Xu Q, Hu X (2019) Nickel metal-organic framework nanosheet/hemin composite as biomimetic peroxidase for electrocatalytic reduction of H2O2. J Electroanal Chem 845:137–143. https://doi.org/10.1016/j.jelechem.2019.05.029

    Article  CAS  Google Scholar 

  25. Zheng D, Ye J, Zhou L, Zhang Y, Yu C (2009) Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. J Electroanal Chem 625:82–87. https://doi.org/10.1016/j.jelechem.2008.10.012

    Article  CAS  Google Scholar 

  26. Kalimuthu P, John SA (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80:1686–1691. https://doi.org/10.1016/j.talanta.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  27. How GTS, Pandikumar A, Ming HN, Ngee LH (2015) Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci Rep 4:5044. https://doi.org/10.1038/srep05044

    Article  CAS  Google Scholar 

  28. Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402. https://doi.org/10.1016/j.electacta.2015.02.116

    Article  CAS  Google Scholar 

  29. Yang YJ (2015) One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 221:750–759. https://doi.org/10.1016/j.snb.2015.06.150

    Article  CAS  Google Scholar 

  30. Guo H, Wang M, Zhao L, Youliwasi N, Liu C (2018) The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Microporous Mesoporous Mater 263:21–27. https://doi.org/10.1016/j.micromeso.2017.11.052

    Article  CAS  Google Scholar 

  31. Zhang W, Liu L, Li Y, Wang D, Ma H, Ren H, Shi Y, Han Y, Ye BC (2018) Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosens Bioelectron 121:96–103. https://doi.org/10.1016/j.bios.2018.08.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the support from the National Natural Science Foundation of China (21950410531), and Science & Technology Research Project of Henan province (182102410090). Also, we express thanks to Dr. Daibing Luo from the Analytical & Testing Center of Sichuan University for the valuable discussion and characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhu Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, S., Tong, L., Liu, S. et al. A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187, 82 (2020). https://doi.org/10.1007/s00604-019-4045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4045-x

Keywords

Navigation