Skip to main content
Log in

Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor for Pb(II) is described that exploits (a) the outstanding adsorption ability of chitosan modified with quaternary ammonium groups (CQAS; cationic) and of lignosulfonate (LSN; anionic), and (b) the good electrical conductivity of polypyrrole nanoparticles (PPy NPs). A glassy carbon electrode (GCE) was modified with PPy NPs and polydopamine, and CQAS and LSN are used as dispersants in PPy. The modified GCE exhibits high selectivity and sensitivity for Pb(II) in the 0.1 to 50 μM concentration range, with a 55 nM detection limit (3σ method). The redox potentials for Pb(II) is around −0.55 V, and the sensor is not interfered by the presence of Hg(II) and Cu(II). The time dependent stability test showed that this sensor can maintain good reproducibility for one month. This sensor was applied to the determination of Pb(II) in wastewater samples.

An electrochemical sensor for lead(II) is described that exploits the outstanding adsorption ability of chitosan that carries quaternary ammonium groups (CQAS), of lignosulfonate (LSN), and the good electrical conductivity of polypyrrole nanoparticles. CQAS and LSN are used as dispersants in PPy. The sensor exhibits high selectivity and sensitivity for Pb(II) in the range of 0.1 to 50 μM with a 55 nM detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han W, Gao GH, Geng JY, Li Y, Wang YY (2018) Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 197:325–335

    Article  CAS  Google Scholar 

  2. Saha P, Paul B (2019) Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Hum Ecol Risk Assess 25:966–987

    Article  CAS  Google Scholar 

  3. Rocha A, Trujillo KA (2019) Neurotoxicity of low-leval lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80

    Article  CAS  Google Scholar 

  4. Ecke F, Singh NJ, Arnemo JM, Bignert A, Helander B, Berglund ÅMM, Borg H, Bröjer C, Holm K, Lanzone M, Miller T, Nordström Å, Räikkönen J, Rodushkin L, Ågren E, Hörnfeldt B (2017) Sublethal lead exposure alters movement behavior in free-ranging golden eagles. Environ Sci Technol 51:5729–5736

    Article  CAS  Google Scholar 

  5. Dos SJM, Quináia SP, Felsner ML (2018) Fast and direct analysis of Cr, cd and Pb in brown sugar by GF AAS. Food Chem 260:19–26

    Article  Google Scholar 

  6. O’Neil GD, Newton ME, Macpherson JV (2015) Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. Anal Chem 87:4933–4940

    Article  Google Scholar 

  7. Yang YL, You Y, Liu YC, Yang ZS (2013) A lead(II) sensor based on a glassy carbon electrode modified with Fe3O4 nanospheres and carbon nanotubes. Microchim Acta 180:379–385

    Article  CAS  Google Scholar 

  8. Dai PP, Yang ZS (2012) Sensor for lead(II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles. Microchim Acta 176:109–115

    Article  CAS  Google Scholar 

  9. Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139

    Article  CAS  Google Scholar 

  10. Zuo YX, Xu JK, Zhu XF, Duan XM, Lu LM, Yu YF (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:171

    Article  Google Scholar 

  11. Ding JN, Zhang DW, Liu Y, Yu ML, Zhan XJ, Zhang D, Zhou P (2019) An electrochemical aptasensor for detection of lead ions using a screen-printed carbon electrode modified with au/polypyrrole composites and toluidine blue. Anal Methods 11:4274

    Article  CAS  Google Scholar 

  12. Teng Y, Liu F, Kan XW (2017) Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires. Microchim Acta 184:2515–2522

    Article  CAS  Google Scholar 

  13. Mollahosseini A, Khadir A, Saeidian J (2019) Core-shell polypyrrole/Fe3O4 nanocomposite as sorbent for magnetic dispersive solid-phase extraction of Al3+ ions from solutions: investigation of the operational parameters. J Water Process Eng 29:100795

    Article  Google Scholar 

  14. Zhou C, Zhu H, Wang Q, Wang JX, Cheng J, Guo YF, Zhou XJ, Bai RB (2017) Adsorption of mercury(II) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Adv 7:18466–18479

    Article  CAS  Google Scholar 

  15. Ouyang XP, Deng YH, Qian Y, Zhang P, Qiu XQ (2011) Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions. Biomacromolecules 12:3313–3320

    Article  CAS  Google Scholar 

  16. Phan DN, Lee H, Huang BJ, Mukai Y, Kim IS (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26:1781–1793

    Article  CAS  Google Scholar 

  17. Li MX, Feng QM, Zhou Z, Zhao W, Xu JJ, Chen HY (2018) Plasmon-enhanced electrochemiluminescence for nucleic acid detection based on gold nanodendrites. Anal Chem 90:1340–1347

    Article  CAS  Google Scholar 

  18. Xu TT, Chi B, Chu ML, Zhang QC, Zhan SY, Shi RJ, Xu H (2018) Hemocompatible ɛ-polylysine-heparin microparticles: a platform for detecting triglycerides in whole blood. Biosens Bioelectron 99:571–577

    Article  CAS  Google Scholar 

  19. Singh D, Choudhary A, Garg A (2018) Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl Mater Interfaces 10:2793–2800

    Article  CAS  Google Scholar 

  20. Lizundiaa E, Urruchi A, Vilas JL, Leóna LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136:250–258

    Article  Google Scholar 

  21. Qian LJ, Ye LJ, Qiu Y, Qu SR (2011) Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer 52:5486–5493

    Article  CAS  Google Scholar 

  22. Yang D, Liu H, Wang DL, Luo ZJ, Lu Y, Xia F, Liu Y (2018) Co-catalysis over a bi-functional ligand-based Pd-catalyst for tandem bis-alkoxycarbonylation of terminal alkynes. Green Chem 20:2588–2595

    Article  CAS  Google Scholar 

  23. Cao NN, Wang XB, Song LY, Zhang ZC (2007) Nanopore microspheres prepared by a cationic surfmer in the miniemulsion polymerization of styrene. J Polym Sci A Polym Chem 45:5800–5810

    Article  CAS  Google Scholar 

  24. Harpale K, More M, Koinkar P, Paill SS, Sonawane KM (2015) Polypyrrole nanostructures and their field emission investigations. Mod Phys Lett B 29:1540035–1540039

    Article  CAS  Google Scholar 

  25. Foo CY, Huang NM, Lim HN, Jiang ZT, Altarawneh M (2019) Hydrostatic bath synthesis of conductive polypyrrole/reduced graphene oxide aerogel as compression sensor. Eur Polym J 117:227–235

    Article  CAS  Google Scholar 

  26. Beluomin MA, Silva JLD, Sedenho GC, Stradiotto NR (2017) D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles. Talanta 165:231–239

    Article  Google Scholar 

  27. Shervedani RK, Amini A (2015) Preparation of graphene/nile blue nanocomposite: application for oxygen reduction reaction and biosensing. Electrochim Acta 173:354–363

    Article  CAS  Google Scholar 

  28. Liu XY, Venkatraman K, Akolkar R (2018) Communication-electrochemical sensor concept for the detection of lead contamination in water utilizing lead underpotential deposition. J Electrochem Soc 165:B9–B11

    Article  CAS  Google Scholar 

  29. Dai L, Li YY, Wang YG, Luo XL, Wei D, Feng R, Yan T, Ren X, Du B, Wei Q (2019) A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens Bioelectron 132:97–104

    Article  CAS  Google Scholar 

  30. Li ZJ, Yin JF, Gao CH, Qiu GH, Meng AA, Li QD (2019) The construction of electrochemical aptasensor based on coral-like polyaniline and au nano-particles for the sensitive detection of prostate specific antigen. Sensor Actuat B-Chem 295:93–100

    Article  CAS  Google Scholar 

  31. Hwang JH, Pathak P, Wang XC, Rodriguez KL, Park J, Cho HJ, Lee WH (2019) A novel Fe-chitosan-coated carbon electrode sensor for in situ As(Ш) detection in mining wastewater and soil leachate. Sensor Actuat B-Chem 294:89–97

    Article  CAS  Google Scholar 

  32. Lin XN, Lu ZW, Zhang YX, Liu BC, Mo GQ, Li JY, Ye JS (2018) A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II). Microchim Acta 185:438

    Article  Google Scholar 

  33. Abdulla M, Ali A, Jamal R, Bakri T, Wu W, Abdiryim T (2019) Electrochemical sensor of double-thiol linked PProDOT@Si composite for simultaneous detection of Cd(II), Pb(II), and Hg(II). Polymers 11:815

    Article  CAS  Google Scholar 

  34. Sun YF, Jian W, Li PH, Yang M, Huang XJ (2019) Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite. Sensor Actuat B-Chem 292:136–147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31730106) and Nanjing Forestry University 2018 Scientific Research Start-up Funds (163105042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Dai, H. & Jin, Y. Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchim Acta 187, 23 (2020). https://doi.org/10.1007/s00604-019-4027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4027-z

Keywords

Navigation