Skip to main content

Advertisement

Log in

An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β(1–42) using a microporous gold nanostructure

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is connected to aggregation of amyloid-β (Aβ) peptide and formation of insoluble plaques in the brain. Aβ level can be monitored as an AD early diagnosis route. In this study, an irregular shaped microporous gold nanostructure with a typical size of 150 × 250 nm was electrodeposited on a polycrystalline gold surface at 0 mV (vs. AgCl) using sodium alendronate. The nanostructure was then characterized by field-emission scanning electron microscopy. An electrochemical peptide-based biosensor was fabricated by immobilizing an Aβ(1–42)-binding peptide on the gold nanostructure. Binding of Aβ(1–42) by the peptide was followed electrochemically using ferro/ferricyanide as a redox probe. Differential pulse voltammograms in a potential range of 0–500 mV (vs. AgCl) with typical peak potentials at 224 mV are linear in the 3–7000 pg mL−1(1–42) concentration range, with a 0.2 pg mL−1 detection limit. The biosensor is free of interferences and was applied to the quantitation of Aβ(1–42) in artificial cerebrospinal fluid and spiked serum samples.

Schematic presentation of an immobilized amyloid-β(1-42)-specific peptide on the surface of a microporous gold nanostructure to fabricate an electrochemical biosensor for early diagnosis of Alzheimer’s disease. Aβ(1-42) capturing by the peptide led to repulsion of ferrocyanide/ferricyanide redox couple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3):292–323

    Article  Google Scholar 

  2. Almdahl IS, Lauridsen C, Selnes P, Kalheim LF, Coello C, Gajdzik B, Moller I, Wettergreen M, Grambaite R, Bjornerud A, Brathen G, Sando SB, White LR, Fladby T (2017) Cerebrospinal fluid levels of amyloid beta 1-43 mirror 1-42 in relation to imaging biomarkers of Alzheimer’s disease. Front Aging Neurosci 9:9. https://doi.org/10.3389/fnagi.2017.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Englund H, Sehlin D, Johansson AS, Nilsson LN, Gellerfors P, Paulie S, Lannfelt L, Pettersson FE (2007) Sensitive ELISA detection of amyloid-β protofibrils in biological samples. J Neurochem 103(1):334–345

    CAS  PubMed  Google Scholar 

  4. Song X, Li X, Wei D, Feng R, Yan T, Wang Y, Ren X, Du B, Ma H, Wei Q (2019) CuS as co-reaction accelerator in PTCA-K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-β protein. Biosens Bioelectron 126:222–229. https://doi.org/10.1016/j.bios.2018.10.068

    Article  CAS  PubMed  Google Scholar 

  5. Yu X, Hayden EY, Xia M, Liang O, Cheah L, Teplow DB, Xie YH (2018) Surface enhanced Raman spectroscopy distinguishes amyloid Beta-protein isoforms and conformational states. Protein Sci 27(8):1427–1438. https://doi.org/10.1002/pro.3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou Y, Zhang H, Liu L, Li C, Chang Z, Zhu X, Ye B, Xu M (2016) Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of beta-amyloid oligomers. Sci Rep 6:35186. https://doi.org/10.1038/srep35186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han X, Man Z, Xu S, Cong L, Wang Y, Wang X, Du Y, Zhang Q, Tang S, Liu Z, Li W (2019) A gold nanocluster chemical tongue sensor array for Alzheimer’s disease diagnosis. Colloids Surf B: Biointerfaces 173:478–485. https://doi.org/10.1016/j.colsurfb.2018.10.020

    Article  CAS  PubMed  Google Scholar 

  8. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6):1029–1034. https://doi.org/10.1021/nl049670j

    Article  CAS  Google Scholar 

  9. Hu T, Chen C, Huang G, Yang X (2016) Antibody modified-silver nanoparticles for colorimetric immuno sensing of Aβ(1–40/1–42) based on the interaction between β-amyloid and Cu2+. Sensors Actuators B Chem 234:63–69. https://doi.org/10.1016/j.snb.2016.04.159

    Article  CAS  Google Scholar 

  10. Rahi A, Sattarahmady N, Heli H (2015) Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep 5:18060

    Article  CAS  Google Scholar 

  11. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H (2017) Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction. Sensors Actuators B Chem 252:62–71. https://doi.org/10.1016/j.snb.2017.05.149

    Article  CAS  Google Scholar 

  12. Tondro GH, Dehdari Vais R, Sattarahmady N (2018) An optical genosensor for enterococcus faecalis using conjugated gold nanoparticles-rRNA oligonucleotide. Sensors Actuators B Chem 263:36–42. https://doi.org/10.1016/j.snb.2018.02.097

    Article  CAS  Google Scholar 

  13. Altintas Z (ed) (2017) Biosensors and nanotechnology: applications in health care diagnostics. Wiley, Hoboken, NJ

  14. Hayat A, Marty JL (2014) Aptamer based electrochemical sensors for emerging environmental pollutants. Front Chem 2:41

    Article  Google Scholar 

  15. Rozenblum GT, Lopez VG, Vitullo AD, Radrizzani M (2016) Aptamers: current challenges and future prospects. Expert Opin Drug Discovery 11(2):127–135

    Article  CAS  Google Scholar 

  16. Zhang Q, Lu Y, Li S, Wu J, Liu Q (2018) Peptide-based biosensors. In: Koutsopoulos S. Peptide applications in biomedicine, biotechnology and bioengineering, 1st edn. Elsevier, pp 565-601

  17. Dehdari Vais R, Sattarahmady N, Heli H (2016) Green electrodeposition of gold nanostructures by diverse size, shape, and electrochemical activity. Gold Bull 49(3–4):95–102

    Article  Google Scholar 

  18. Sattarahmady N, Firoozabadi V, Nazari-Vanani R, Azarpira N (2018) Investigation of amyloid formation inhibition of chemically and biogenically from Citrus aurantium L. blossoms and Rose damascena oils of gold nanoparticles: toxicity evaluation in rat pheochromocytoma PC12 cells. Int J Biol Macromol 112:703–711

    Article  CAS  Google Scholar 

  19. Rahimi-Moghaddam F, Azarpira N, Sattarahmady N (2018) Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Lasers Med Sci 33(8):1769–1779. https://doi.org/10.1007/s10103-018-2538-1

    Article  CAS  PubMed  Google Scholar 

  20. Sattarahmady N, Heidari M, Zare T, Lotfi M, Heli H (2016) Zinc-nickel ferrite nanoparticles as a contrast agent in magnetic resonance imaging. Appl Magn Reson 47(8):925–935. https://doi.org/10.1007/s00723-016-0801-9

    Article  CAS  Google Scholar 

  21. Rushworth JV, Ahmed A, Griffiths HH, Pollock NM, Hooper NM, Millner PA (2014) A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens Bioelectron 56:83–90. https://doi.org/10.1016/j.bios.2013.12.036

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Duan G, Li Y, Liu G, Dai Z, Zhang H, Cai W (2013) An invisible template method toward gold regular arrays of nanoflowers by electrodeposition. Langmuir 29(11):3512–3517. https://doi.org/10.1021/la400433z

    Article  CAS  PubMed  Google Scholar 

  23. Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19(15):6277–6282. https://doi.org/10.1021/la034209c

    Article  CAS  PubMed  Google Scholar 

  24. Ross RD, Roeder RK (2011) Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite. J Biomed Mater Res A 99A(1):58–66. https://doi.org/10.1002/jbm.a.33165

    Article  CAS  Google Scholar 

  25. Kozlowski LP (2016) IPC - Isoelectric Point Calculator. Biol Direct 11:55. http://isoelectric.org/calculate.php. Accessed 02 Oct 2019

  26. Innovagen AB (2015) PepCalc.com - Peptide property calculator. https://pepcalc.com. Accessed 02 Oct 2019

  27. GenScript (2002) Peptide Molecular Weight Calculator. https://www.genscript.com/tools/peptide-property-calculator. Accessed 02 Oct 2019

  28. Kang Y, Feng K-J, Chen J-W, Jiang J-H, Shen G-L, Yu R-Q (2008) Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry 73(1):76–81. https://doi.org/10.1016/j.bioelechem.2008.04.024

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Nie X-M, Gan S-L, Jiang J-H, Shen G-L, Yu R-Q (2008) Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Anal Biochem 382(1):16–22. https://doi.org/10.1016/j.ab.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Zhao H, Chen Z, Mu X, Guo L (2010) Aptamer-based electrochemical approach to the detection of thrombin by modification of gold nanoparticles. Anal Bioanal Chem 398(1):563–570. https://doi.org/10.1007/s00216-010-3922-2

    Article  CAS  PubMed  Google Scholar 

  31. Rahi A, Sattarahmady N, Heli H (2016) Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 156-157:218–224. https://doi.org/10.1016/j.talanta.2016.05.029

    Article  CAS  PubMed  Google Scholar 

  32. Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich M (2005) The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation. Protein Sci 14(7):1753–1759. https://doi.org/10.1110/ps.041266605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zecca C, Tortelli R, Panza F, Arcuti S, Piccininni M, Capozzo R, Barulli MR, Barone R, Cardinali R, Abbrescia D (2018) Plasma β-amyloid1–42 reference values in cognitively normal subjects. J Neurol Sci 391:120–126

    Article  CAS  Google Scholar 

  34. Pesaresi M, Lovati C, Bertora P, Mailland E, Galimberti D, Scarpini E, Quadri P, Forloni G, Mariani C (2006) Plasma levels of beta-amyloid (1–42) in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(6):904–905

    Article  CAS  Google Scholar 

  35. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K (1999) Cerebrospinal fluid β-amyloid (1-42) in Alzheimer disease: differences between early-and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56(6):673–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Iran National Science Foundation Grant NO. 96005985 is gratefully acknowledged. We would also like to thank the Research Councils of Shiraz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Heli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negahdary, M., Heli, H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β(1–42) using a microporous gold nanostructure. Microchim Acta 186, 766 (2019). https://doi.org/10.1007/s00604-019-3903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3903-x

Keywords

Navigation