Skip to main content
Log in

A boronic acid modified binary matrix consisting of boron nitride and α-cyano-4-hydroxycinnamic acid for determination of cis-diols by MALDI-TOF MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A MALDI-TOF mass spectrometric method is described for the determination of small molecule compounds with cis-diol. It is based on the use of a binary matrix consisting of boron nitride (BN) and α-cyano-4-hydroxycinnamic acid that was modified with the derivatization reagent of (3-(acridin-9-ylamino)phenyl)boronic acid which can recognize cis-diols. The binary matrix is used for desorption/ionization (DI) in the positive ion mode. The mechanism leading to DI enhancement was investigated. The results imply that BN is beneficial for the DI because it induces an enhancement in the positive ion mode. The boronic acid-functionalized binary matrix was successfully applied to capture the glucose, shikimic acid and quinic acid. The method was applied to the determination of 3-chloro-1,2-propanediol in plant oil.

Schematic representation of a method for detecting the cis-diol compounds on matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using the binary matrix of boron nitride (BN)/α-cyano-4-hydroxycinnamic acid (CHCA) that was modified with (3-(acridin-9-ylamino)phenyl) boronic acid (AYPBA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leopold J, Popkova Y, Engel KM, Schiller J (2018) Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8(4):173. https://doi.org/10.3390/biom8040173

    Article  CAS  PubMed Central  Google Scholar 

  2. Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185(3):200. https://doi.org/10.1007/s00604-018-2687-8

    Article  CAS  Google Scholar 

  3. Feenstra AD, O'Neill KC, Yagnik GB, Lee YJ (2016) Organic-inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides. RSC Adv 6(101):99260–99268. https://doi.org/10.1039/c6ra20469d

    Article  CAS  Google Scholar 

  4. Chen CT, Chen YC (2008) A two-matrix system for MALDI MS analysis of serine phosphorylated peptides concentrated by Fe3O4/Al2O3 magnetic nanoparticles. J Mass Spectrom 43(4):538–541. https://doi.org/10.1002/jms.1353

    Article  CAS  PubMed  Google Scholar 

  5. Shastri L, Kailasa SK, Wu HF (2010) Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS. Talanta 81(4–5):1176–1182. https://doi.org/10.1016/j.talanta.2010.01.065.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Gao D, Bai H, Liu H, Lin S, Jiang Y (2016) Carbon dots and 9AA as a binary matrix for the detection of small molecules by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 27(7):1227–1235. https://doi.org/10.1007/s13361-016-1396-y

    Article  CAS  PubMed  Google Scholar 

  7. Banazadeh A, Peng W, Veillon L, Mechref Y (2018) Carbon nanoparticles and graphene nanosheets as MALDI matrices in glycomics: a new approach to improve glycan profiling in biological samples. J Am Soc Mass Spectrom 29(9):1892–1900. https://doi.org/10.1007/s13361-018-1985-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodríguez CE, Palacios J, Fajardo I, Urdiales JL, Le Guével X, Lozano J, Sánchez-Jiménez F (2016) Conventional matrices loaded onto a graphene layer enhances MALDI-TOF/TOF signal: its application to improve detection of phosphorylated peptides. J Am Soc Mass Spectrom 27:366–369. https://doi.org/10.1007/s13361-015-1299-3

    Article  CAS  PubMed  Google Scholar 

  9. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44(22):8097–8123. https://doi.org/10.1039/c5cs00013k

    Article  CAS  PubMed  Google Scholar 

  10. Wang ST, Chen D, Ding J, Yuan BF, Feng YQ (2013) Borated titania, a new option for the selective enrichment of cis-diol biomolecules. Chemistry 19(2):606–612. https://doi.org/10.1002/chem.201203109

    Article  CAS  PubMed  Google Scholar 

  11. Jiang B, Qu Y, Zhang L, Liang Z, Zhang Y (2016) 4-Mercaptophenylboronic acid functionalized graphene oxide composites: preparation, characterization and selective enrichment of glycopeptides. Anal Chim Acta 912:41–48. https://doi.org/10.1016/j.aca.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Jing H, Wen T, Wang Y, Zhao Y, Wang X, Qian X, Ying W (2019) Phenylboronic acid functionalized C3N4 facultative hydrophilic materials for enhanced enrichment of glycopeptides. Talanta 191:509–518. https://doi.org/10.1016/j.talanta.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Ni YL (2015) Selective enrichment and MALDI-TOF MS analysis of small molecule compounds with vicinal diols by boric acid-functionalized graphene oxide. J Am Soc Mass Spectrom 26:1291–1298. https://doi.org/10.1007/s13361-015-1162-6

    Article  CAS  PubMed  Google Scholar 

  14. Addy PS, Bhattacharya A, Mandal SM, Basak A (2014) Label-assisted laser desorption/ionization mass spectrometry (LA-LDI-MS): an emerging technique for rapid detection of ubiquitous cis-1,2-diol functionality. RSC Adv 4(87):46555–46560. https://doi.org/10.1039/c4ra07499h

    Article  CAS  Google Scholar 

  15. Kaya I, Brülls SM, Dunevall J, Jennische E, Lange S, Mårtensson J, Ewing AG, Malmberg P, Fletcher JS (2018) Catecholamines using 4-(N-methyl)pyridinium Boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal Chem 90(22):13580–13590. https://doi.org/10.1021/acs.analchem.8b03746

  16. Wang Q, Yu L, Qi CB, Ding J, He XM, Wang RQ, Feng YQ (2018) Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry. Talanta 176:344–349. https://doi.org/10.1016/j.talanta.2017.08.055

    Article  CAS  PubMed  Google Scholar 

  17. Chen YS, Ding J, He XM, Xu J, Feng YQ (2018) Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta 185(8):368. https://doi.org/10.1007/s00604-018-2882-7

    Article  CAS  Google Scholar 

  18. Wang J, Sun J, Wang J, Liu H, Xue J, Nie Z (2017) Hexagonal boron nitride nanosheets as a multifunctional background-free matrix to detect small molecules and complicated samples by MALDI mass spectrometry. Chem Commun 53(58):8114–8117. https://doi.org/10.1039/c7cc02957h

    Article  CAS  Google Scholar 

  19. Zhou X, Wei Y, He Q, Boey F, Zhang Q, Zhang H (2010) Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun 46(37):6974–6976. https://doi.org/10.1039/c0cc01681k

    Article  CAS  Google Scholar 

  20. Lin Z, Zheng J, Lin G, Tang Z, Yang X, Cai Z (2015) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules using graphitic carbon nitride nanosheet matrix. Anal Chem 87(15):8005–8012. https://doi.org/10.1021/acs.analchem.5b02066

    Article  CAS  PubMed  Google Scholar 

  21. Dolan LC, Matulka RA, Burdock GA (2010) Naturally occurring food toxins. Toxins 2(9):2289–2332. https://doi.org/10.3390/toxins2092289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang P, Li C, Jin F, Su H, Shao H, Jin M, Wang S, She Y, Zheng L, Wang J, Yuan Y (2017) Tracking changes of hexabromocyclododecanes during the refining process in peanut, corn, and soybean oils. J Agric Food Chem 65(45):9880–9886. https://doi.org/10.1021/acs.jafc.7b03606

  23. Hamlet CG, Sadd PA, Crews C, Velisek J, Baxter DE (2002) Occurrence of 3-chloro-propane-1,2-diol (3-MCPD) and related compounds in foods: a review. Food Addit Contam 19(7):619–631. https://doi.org/10.1080/02652030210132391

    Article  CAS  PubMed  Google Scholar 

  24. Genualdi S, Nyman P, DeJager L (2017) Simultaneous analysis of 3-MCPD and 1,3-DCP in Asian style sauces using QuEChERS extraction and gas chromatography-triple quadrupole mass spectrometry. J Agric Food Chem 65(4):981–985. https://doi.org/10.1021/acs.jafc.6b05051

  25. Wang LY, Hu ZY, Wang TJ, Shen XH, Wu PG (2016) Simultaneous determination of 2- and 3-MCPD esters in infant formula milk powder by solid-phase extraction and GC-MS analysis. J AOAC Int 99(3):786–791. https://doi.org/10.5740/jaoacint.15-0310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the National Key R&D Program of China (2017YFC0906800), National Natural Science Foundation of China (21635006, 21475098, 31670373 and 21605117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qi Feng.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YS., Xiao, HM., Wang, TQ. et al. A boronic acid modified binary matrix consisting of boron nitride and α-cyano-4-hydroxycinnamic acid for determination of cis-diols by MALDI-TOF MS. Microchim Acta 186, 591 (2019). https://doi.org/10.1007/s00604-019-3711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3711-3

Keywords

Navigation