Skip to main content
Log in

Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The study presents the synthesis of polypyrrole-coated palladium platinum/nitrogen-doped reduced graphene oxide nanocomposites (PdPt-PPy/N-rGO NC) via direct the reduction of Pd(II) and Pt(II) in the presence of pyrrole monomer, N-rGO and L-cysteine as the reducing agent. X-ray diffraction confirmed the presence of metallic Pd and Pt from the reduction of Pd and Pt cations. Transmission electron microscopy images revealed the presence of Pd, Pt and PPy deposition on N-rGO. Impedance spectroscopy results gave a decreased charge transfer resistance due to the presence of N-rGO. The nanocomposites were synthesized with different Pd/Pt ratios (2:1, 1:1 and 1:2). A glassy carbon electrode (GCE) modified with the nanocomposite showed enhanced electrochemical sensing capability for formaldehyde in 0.1 M sulfuric acid solution. Cyclic voltammetry showed an increase in the formaldehyde oxidation peak current at the GCE modified with Pd2Pt1 PPy N-rGO. At a typical potential of 0.45 V (vs. SCE), the sensitivity in the linear segment was 345.8 μA.mM −1. cm−2. The voltammetric response was linear between 0.01 and 0.9 mM formaldehyde concentration range, with a 27 µM detection limit (at S/N = 3).

Schematic presentation of formaldehyde detection by Pd2Pt1-PPy/nitrogen-doped reduced Graphene Oxide Nanocomposite (Pd2Pt1-PPy /N-Gr NC). The decrease of charge transfer resistance and the agglomeration of deposited metals in the presence of N-rGO enhance the current response of the electrochemical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J, Pamidi PVA, Cepria G (1996) Electrocatalysis and amperometric detection of aliphatic aldehydes at platinum–palladium alloy coated glassy carbon electrode. Anal Chim Acta 330:151–158

    Article  CAS  Google Scholar 

  2. Vianello F, Stefani A, Di Paolo ML, Rigo A, Lui A, Margesin B, Zen M, Scarpa M, Soncini G (1996) Potentiometric detection of formaldehyde in air by an aldehyde dehydrogense FET. Sensors Actuators B Chem 37:49–54

    Article  CAS  Google Scholar 

  3. Herschkoviz Y, Eshkenazi I, Campbell CE, Rishpon J (2000) An electrochemical biosensor for formaldehyde. J Electroanal Chem 491:182–187

    Article  Google Scholar 

  4. Mohlmann GR (1985) Formaldehyde detection in air by laser induced fluorescence. Appl Spectrosc 39:98–101

    Article  Google Scholar 

  5. Mann B, Grajeski ML (1987) New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxioxalate chemiluminescence. J Chromatogr 386:149–158

    Article  CAS  Google Scholar 

  6. Dumas T (1982) Determination of formaldehyde in air by gas chromatography. J Chromatogr 247:289–295

    Article  CAS  Google Scholar 

  7. Zhou ZL, Kang TF, Zhang Y, Cheng SY (2009) Electrochemical sensor for formaldehyde based on PtPd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta 164:133–138

    Article  CAS  Google Scholar 

  8. Ashrafi A, Golozar MA, Mallakpour S (2006) Morphological investigations of polypyrrole coatings on stainless. Synth Met 156:1280–1285

    Article  CAS  Google Scholar 

  9. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene– chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  10. Zang J, Li X (2011) In situ synthesis of ultrafine b-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J Mater Chem 21:10965–10969

    Article  CAS  Google Scholar 

  11. Fan Y, Liu JH, Yang CP, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sensors Actuators B Chem 157:669–674

    Article  CAS  Google Scholar 

  12. Luo Y, Lu W, Chang G, Liao F, Sun X (2011) One-step preparation of ag nanoparticle-decorated coordination polymer nanobelts and their application for enzymeless H2O2 detection. Electrochim Acta 56:8371–8374

    Article  CAS  Google Scholar 

  13. Reghu M, Cao Y, Moses D, Heeger AJ (1993) Counterion-induced processibility of polyaniline: transport at the metal-insulator boundary. Phys Rev B 47:1758–1764

    Article  CAS  Google Scholar 

  14. Peng Y, Lin D, Justin Gooding J, Xue Y, Dai L (2018) Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon 136:329–236

    Article  CAS  Google Scholar 

  15. Khodadadi Z (2018) Evaluation of H2S sensing characteristics of metals –doped graphene and metals decorated graphene: insights from DFT study. Physica E: Low-Dimens Syst Nanostruct 99:261–268

    Article  CAS  Google Scholar 

  16. Mahmoudian MR, Alias Y, Basirun W, Woi PM, Sookhakian M (2014) Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sensors Actuators B Chem 201:526–534

    Article  CAS  Google Scholar 

  17. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun W, Mehrali M, Sookhakian M, Hamdi M, Alias Y (2015) Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application. Mater Sci Eng C Mater Biol Appl 49:656–668

    Article  CAS  Google Scholar 

  18. Sookhakian M, Amin YM, Zakaria R, Baradaran S, Mahmoudian MR, Rezayi M, Tajabadi MT, Basirun WJ (2014) Enhanced photovoltaic performance of polymer hybrid nanostructure heterojunction solar cells based on poly (3-hexylthiophene)/ZnS/ZnO/reduced graphene oxide shell–core nanorod arrays. Ind Eng Chem Res 53:14301–14309

    Article  CAS  Google Scholar 

  19. Sookhakian M, Ridwan N, Zalnezhad E, Yoon G, Azarang M, Mahmoudian MR, Alias Y (2016) Layer-by-layer electrodeposited reduced graphene oxide- copper Nanopolyhedra films as efficient platinum-free counter electrodes in high efficiency dye-sensitized solar cells. J Electrochem Soc 163:D154–D159

    Article  CAS  Google Scholar 

  20. Tajabadi MT, Basirun WJ, Lorestani F, Zakaria R, Baradaran S, Amin Y, Mahmoudian MR, Rezayi M, Sookhakian M (2015) Nitrogen-doped graphene-silver nanodendrites for the non-enzymatic detection of hydrogen peroxide. Electrochim Acta 151:126–133

    Article  CAS  Google Scholar 

  21. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry ofglucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  22. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomedicine 6:3443–3448

    PubMed  PubMed Central  Google Scholar 

  23. Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J (2013) Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction. ACS Nano 7:4764–4773

    Article  CAS  Google Scholar 

  24. Yamauchi O, Odani A, Takani M (2002) Metal–amino acid chemistry. Weak interactions and related functions of side chain groups. J Chem Soc Dalton Trans 18:3411–3421

    Article  Google Scholar 

  25. Selvaraj V, Alagar M, Kumar KS (2007) Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Appl Catal B Environ 75:129–138

    Article  CAS  Google Scholar 

  26. Randles JEB (1948) A cathode ray polarograph. Part II.—the current-voltage curves. Trans Faraday Soc 44:327–338

    Article  CAS  Google Scholar 

  27. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AICHE J 1:264–270

    Article  CAS  Google Scholar 

  28. Lian W, Wang L, Song Y, Yuan H, Zhao S, Li P, Chen L (2009) A hydrogen peroxide sensorbased on electrochemically roughened silver electrodes. Electrochim Acta 54:4334–4339

    Article  CAS  Google Scholar 

  29. Pinto GF, Rocha DP, Richter EM, Muñoz RAA, Silva SG (2019) Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5–diacetyl–1,4–dihydrolutidine using an unmodified glassy-carbon electrode. Talanta 198:237–241

    Article  CAS  Google Scholar 

  30. Trivedi D, Crosse J, Tanti J, Cass AJ, Toghill KE (2018) The electrochemical determination of formaldehyde in aqueous media using nickel modified electrodes. Sensors Actuators B Chem 270:298–303

    Article  Google Scholar 

  31. Zhang Y, Zhang M, Cai Z, Chen M, Cheng F (2012) A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim Acta 68:172–177

    Article  CAS  Google Scholar 

  32. Chi X, Liu C, Liu L, Li S, Li H, Zhang X, Bo X, Shan H (2014) Enhanced formaldehyde-sensing properties of mixed Fe2O3 –In2O3 nanotubes. Mater Sci Semicond Process 18:160–164

    Article  CAS  Google Scholar 

  33. Zheng Y, Wang J, Yao P (2011) Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sensors Actuators B Chem 156:723–730

    Article  CAS  Google Scholar 

  34. Mei H, Wu W, Yu B, Wu H, Xia Q (2016) Nonenzymatic electrochemical sensor based on Fe@Pt core–shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sensors Actuators B Chem 223:68–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mojdeh Yeganeh for valuable discussion. This research is supported by the UMRG Sub program RP020C-16SUS and Frontier Research Grant FG030-17AFR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad R. Mahmoudian or Yatimah B. Alias.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.60 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, M.R., Basirun, W.J., Woi, P.M. et al. Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide. Microchim Acta 186, 369 (2019). https://doi.org/10.1007/s00604-019-3481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3481-y

Keywords

Navigation