Skip to main content
Log in

A cathodic photoelectrochemical sensor for chromium(VI) based on the use of PbS quantum dot semiconductors on an ITO electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Under visible-light irradiation, a cathodic photoelectrochemical (PEC) sensor is presented for highly sensitive determination of Cr(VI) at a potential of −0.25 V (vs SCE). PbS quantum dots (QDs) were capped with mercaptoacetic acid and assembled on the surface of an indium tin oxide (ITO) electrode via the linker poly(diallyl dimethyl ammonium chloride) providing a photoactive sensor. Cr(VI) accepts the photoelectrons generated by the PbS QDs. This promotes the separation of electron holes and enhances the cathodic photocurrent generated by a 470-nm LED. The sensor has 10 pM detection limit and a linear working range from 0.02 nM to 2 μM of chromate. The method was successfully applied to the determination of Cr(VI) and total chromium in spiked environmental water samples.

Schematic illustration of the photocurrent enhancement response of ITO/PbS toward chromium(VI). In the presence of Cr(VI) (red line), Cr(VI) accepts the photoelectrons generated by the PbS QDs under 470-nm LED irradiation, resulting in improved photocurrent of ITO/PbS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68. https://doi.org/10.1007/s00604-009-0164-0

    Article  CAS  Google Scholar 

  2. WHO, Chromium in Drinking-water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality, World Health Organization, Geneva, 003 (WHO/SDE/WSH/03.04/4). http://www.who.int/

  3. Balasubramanian S, Pugalenthi V (1999) Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV–visible spectrophotometric methods. Talanta 50:457–467. https://doi.org/10.1016/S0039-9140(99)00135-6

    Article  CAS  PubMed  Google Scholar 

  4. Ravindran A, Elavarasi M, Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2012) Selective colorimetric detection of nanomolar Cr(VI) in aqueous solutions using unmodified silver nanoparticles. Sensor Actuat B: Chem 166-167:365–371. https://doi.org/10.1016/j.snb.2012.02.073

    Article  CAS  Google Scholar 

  5. Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L (2017) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52. https://doi.org/10.1016/j.bios.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Wang HJ, Du XM, Wang M, Wang TC, Ou-Yang H, Wang B, Zhu MT, Wang Y, Jia G, Feng WY (2010) Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 81:1856–1860. https://doi.org/10.1016/j.talanta.2010.03.059

    Article  CAS  PubMed  Google Scholar 

  7. Jin W, Wu G, Chen A (2014) Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 139:235–241. https://doi.org/10.1039/c3an01614e

    Article  CAS  PubMed  Google Scholar 

  8. Wang GL, Shu JX, Dong YM, Wu XM, Zhao WW, Xu JJ, Chen HY (2015) Using G-quadruplex/hemin to "switch-on" the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing. Anal Chem 87:2892–2900. https://doi.org/10.1021/ac5043945

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Huang D, Wu Y, Di J (2016) Photoelectrochemical determination of Cu2+ ions based on assembly of au/ZnS nanoparticles. Sensor Actuat B: Chem 235:432–438. https://doi.org/10.1016/j.snb.2016.05.077

    Article  CAS  Google Scholar 

  10. Hun X, Wang S, Wang S, Zhao J, Luo X (2017) A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode. Sensor Actuat B: Chem 249:83–89. https://doi.org/10.1016/j.snb.2017.04.065

    Article  CAS  Google Scholar 

  11. Liu S, Cao H, Wang Z, Tu W, Dai Z (2015) Label-free photoelectrochemical cytosensing via resonance energy transfer using gold nanoparticle-enhanced carbon dots. Chem Commun 51:14259–14262. https://doi.org/10.1039/c5cc04092b

    Article  CAS  Google Scholar 

  12. Wang Z, Yan Z, Wang F, Cai J, Guo L, Su J, Liu Y (2017) Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens Bioelectron 97:107–114. https://doi.org/10.1016/j.bios.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Zang Y, Lei J, Ju H (2017) Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 96:8–16. https://doi.org/10.1016/j.bios.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  14. Zhao W-W, Xu J-J, Chen H-Y (2014) Photoelectrochemical DNA biosensors. Chem Rev 114:7421–7441. https://doi.org/10.1021/cr500100j

    Article  CAS  PubMed  Google Scholar 

  15. Zhao W-W, Xu J-J, Chen H-Y (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soci Rev 44:729–741. https://doi.org/10.1039/C4CS00228H

    Article  CAS  Google Scholar 

  16. Li H, Li J, Wang W, Yang Z, Xu Q, Hu X (2013) A subnanomole level photoelectrochemical sensing platform for hexavalent chromium based on its selective inhibition of quercetin oxidation. Analyst 138:1167–1173. https://doi.org/10.1039/c2an36605c

    Article  CAS  PubMed  Google Scholar 

  17. Fang T, Yang X, Zhang L, Gong J (2016) Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. J Hazard Mater 312:106–113. https://doi.org/10.1016/j.jhazmat.2016

    Article  CAS  PubMed  Google Scholar 

  18. Gong L, Dai H, Zhang S, Lin Y (2016) Silver iodide-chitosan Nanotag induced biocatalytic precipitation for self-enhanced ultrasensitive Photocathodic Immunosensor. Anal Chem 88:5775–5782. https://doi.org/10.1021/acs.analchem.6b00297

    Article  CAS  PubMed  Google Scholar 

  19. Bandara J, Yasomanee JP (2007) P-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond Sci and Tech 22:20–24. https://doi.org/10.1088/0268-1242/22/2/004

    Article  CAS  Google Scholar 

  20. Lahmar H, Benamira M, Akika FZ, Trari M (2017) Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light. J Phys Chem Solids 110:254–259. https://doi.org/10.1016/j.jpcs.2017.06.021

    Article  CAS  Google Scholar 

  21. García-Valenzuela JA, Baez-Gaxiola MR, Sotelo-Lerma M (2013) Chemical bath deposition of PbS thin films on float glass substrates using a Pb(CH3COO)2–NaOH–(NH2)2CS–N(CH2CH2OH)3–CH3CH2OH definite aqueous system and their structural, optical, and electrical/photoelectrical characterization. Thin Solid Films 534:126–131. https://doi.org/10.1016/j.tsf.2013.02.035

    Article  CAS  Google Scholar 

  22. Wang GL, Liu KL, Shu JX, Gu TT, Wu XM, Dong YM, Li ZJ (2015) A novel photoelectrochemical sensor based on photocathode of PbS quantum dots utilizing catalase mimetics of bio-bar-coded platinum nanoparticles/G-quadruplex/hemin for signal amplification. Biosens Bioelectron 69:106–112. https://doi.org/10.1016/j.bios.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  23. Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photonics 3:325–331. https://doi.org/10.1038/nphoton.2009.89

    Article  CAS  Google Scholar 

  24. Thupakula U, Bal JK, Debangshi A, Khan AH, Dalui A, Acharya S (2012) Ultra narrow PbS Nanorod field emitter. Journal Phys Chem C 116:18564–18570. https://doi.org/10.1021/jp3074927

    Article  CAS  Google Scholar 

  25. Nair G, Chang LY, Geyer SM, Bawendi MG (2011) Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett 11:2145–2151. https://doi.org/10.1021/nl200798x

    Article  CAS  PubMed  Google Scholar 

  26. Zhou G, Lü M, Xiu Z, Wang S, Zhang H, Zhou Y, Wang S (2006) Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated Nanocubes, and Nanocubes and their shape evolution process. Journal Phys Chem B 110:6543–6548. https://doi.org/10.1021/jp0549881

    Article  CAS  Google Scholar 

  27. Yu Y, Zhang K, Sun S (2012) One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl Surf Sci 258:7181–7187. https://doi.org/10.1016/j.apsusc.2012.04.031

    Article  CAS  Google Scholar 

  28. Wang GL, Liu KL, Dong YM, Li ZJ, Zhang C (2014) In situ formation of p-n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection. Anal Chim Acta 827:34–39. https://doi.org/10.1016/j.aca.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  29. Li R, Zhang Y, Tu W, Dai Z (2017) Photoelectrochemical bioanalysis platform for cells monitoring based on dual signal amplification using in situ generation of Electron acceptor coupled with heterojunction. ACS Appl Mater Interfaces 9:22289–22297. https://doi.org/10.1021/acsami.7b06107

    Article  CAS  PubMed  Google Scholar 

  30. Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi VR, Shrivastav R, Dass S (2012) Nanostructured bilayered thin films in photoelectrochemical water splitting – a review. Int J Hydrogen Energ 37:18713–18730. https://doi.org/10.1016/j.ijhydene.2012.10.028

    Article  CAS  Google Scholar 

  31. Weast RC, Astle MJ (1982) CRC Handb Chem Phys, sixty third ed., CRC Press Inc., Florida. http://hbcponline.com

  32. Zhang JR, Zeng AL, Luo HQ, Li NB (2016) Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution. J Hazard Mater 304:66–72. https://doi.org/10.1016/j.jhazmat.2015.10.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21475092) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Di.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Cao, L., Wu, Y. et al. A cathodic photoelectrochemical sensor for chromium(VI) based on the use of PbS quantum dot semiconductors on an ITO electrode. Microchim Acta 185, 356 (2018). https://doi.org/10.1007/s00604-018-2883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2883-6

Keywords

Navigation