Skip to main content
Log in

Two-dimensional MoS2 as a nano-binder for ssDNA: Ultrasensitive aptamer based amperometric detection of Ochratoxin A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) MoS2 is found to possess different affinities for ssDNA and dsDNA. This finding is exploited in an amperometric aptamer-based method for the determination of the mycotoxin ochratoxin A (OTA). Initially, a dsDNA probe (formatted through the hybridization of OTA-aptamer with an auxiliary DNA) is self-assembled on a gold electrode. Upon introduction of OTA, it will bind to the aptamer and cause the unwinding of dsDNA, while the auxiliary DNA (with single-stranded structure) remains on the electrode. Since the affinity of 2D MoS2 for ssDNA is considerably larger than that for dsDNA, it will be adsorbed on the electrode by binding to the auxiliary DNA. Notably, 2D MoS2 possesses peroxidase-like activity. Hence, it can catalyze the amplification of electrochemical signal of the hydroquinone/benzoquinone redox system. Under optimal conditions, the amperometric signal (best measured at −0.2 V vs. SCE) increases with increasing OTA concentration in the range from 0.5 pg·mL−1 to 1.0 ng·mL−1, with a lower detection limit of 0.23 pg·mL−1. The method was applied to the determination of OTA in spiked red wine.

Herein we construct a convenient electrochemical aptasensor for sensitive monitor of ochratoxin A by using 2D MoS2 as a nano-binder to catalyze the amplification of electrochemical signal from hydroquinone/benzoquinone system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Breitholtz A, Olsen M, Dahlbäck Å, Hult K (1991) Plasma ochratoxin A levels in three Swedish populations surveyed using an ion-pair HPLC technique. Food additives and Contaminats 8:183–192

    Article  CAS  Google Scholar 

  2. Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J (2017) Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Microchim Acta 184:863–870

    Article  CAS  Google Scholar 

  3. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Microchim Acta 184:1151–1159

    Article  CAS  Google Scholar 

  4. Zhang C, Tang J, Huang L, Li Y, Tang D (2017) In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184:2445–2453

    Article  CAS  Google Scholar 

  5. Jalili M, Jinap S (2012) Natural occurrence of aflatoxins and ochratoxin A in commercial dried chili. Food Control 24:160–164

    Article  CAS  Google Scholar 

  6. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  7. Yang C, Wang Y, Marty J-L, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727

    Article  CAS  Google Scholar 

  8. Flajs D, Domijan AM, Ivić D, Cvjetković B, Peraica M (2009) ELISA and HPLC analysis of ochratoxin A in red wines of Croatia. Food Control 20:590–592

    Article  CAS  Google Scholar 

  9. Han X, Zhang Y, Nie J, Zhao S, Tian Y, Zhou N (2017) Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers. Microchim Acta 185:4

    Article  Google Scholar 

  10. Nasirian V, Chabok A, Barati A, Rafienia M, Arabi MS, Shamsipur M (2017) Ultrasensitive aflatoxin B1 assay based on FRET from aptamer labelled fluorescent polymer dots to silver nanoparticles labeled with complementary DNA. Microchim Acta 184:4655–4662

    Article  CAS  Google Scholar 

  11. Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184:4545–4552

    Article  CAS  Google Scholar 

  12. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181:479–491

    Article  CAS  Google Scholar 

  13. Ren X, Yan J, Wu D, Wei Q, Wan Y (2017) Nanobody-Based Apolipoprotein E Immunosensor for Point-of-Care Testing. ACS Sensors 2:1267–1271

    Article  CAS  Google Scholar 

  14. Han Q, Wang R, Xing B, Zhang T, Khan MS, Wu D, Wei Q (2018) Label-free photoelectrochemical immunoassay for CEA detection based on CdS sensitized WO3@BiOI heterostructure nanocomposite. Biosens Bioelectron 99:493–499

    Article  CAS  Google Scholar 

  15. Wang X, Xu R, Sun X, Wang Y, Ren X, Du B, Wu D, Wei Q (2017) Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron 96:239–245

    Article  CAS  Google Scholar 

  16. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865–891

    Article  CAS  Google Scholar 

  17. Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z (2017) An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron 91:538–544

    Article  CAS  Google Scholar 

  18. Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183:1909–1916

    Article  CAS  Google Scholar 

  19. Wang S, Zhang Y, Pang G, Zhang Y, Guo S (2017) Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Anal Chem 89:1704–1709

    Article  CAS  Google Scholar 

  20. Xie S, Chai Y, Yuan Y, Bai L, Yuan R (2014) Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification. Biosens Bioelectron 55:324–329

    Article  CAS  Google Scholar 

  21. Radisavljevic B, Radenovic A, Brivio J, Giacometti iV, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–14s

    Article  CAS  Google Scholar 

  22. Cheng Z, Shen Q, Yu H, Han D, Zhong F, Yang Y (2017) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with the layered MoS2-reduced graphene oxide and Prussian Blue. Microchim Acta 184:4587–4595

    Article  CAS  Google Scholar 

  23. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron 89(Part 1):56–71

    Article  CAS  Google Scholar 

  24. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183:1501–1506

    Article  CAS  Google Scholar 

  25. Qu F, Liu Y, Kong R, You J (2017) A versatile DNA detection scheme based on the quenching of fluorescent silver nanoclusters by MoS2 nanosheets: Application to aptamer-based determination of hepatitis B virus and of dopamine. Microchim Acta 184:4417–4424

    Article  CAS  Google Scholar 

  26. Cao X (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181:1133–1141

    Article  CAS  Google Scholar 

  27. Yang Y, Zhang H, Huang C, Yang D, Jia N (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites. Biosensors and Bioelectronics 89. Part 1:461–467

    Google Scholar 

  28. Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X (2017) MoS2 nanosheet-Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 5:1446–1453

    Article  CAS  Google Scholar 

  29. Wang X, Chu C, Shen L, Deng W, Yan M, Ge S, Yu J, Song X (2015) An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sensors Actuators B 206:30–36

    Article  CAS  Google Scholar 

  30. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184:203–210

    Article  CAS  Google Scholar 

  31. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  Google Scholar 

  32. Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  CAS  Google Scholar 

  33. Jia L, Ding L, Tian J, Bao L, Hu Y, Ju H, Yu J-S (2015) Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nano 7:15953–15961

    CAS  Google Scholar 

  34. Kenry GA, Zhang X, Zhang H, Lim CT (2016) Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS2 Nanosheets. ACS Sensors 1:1315–1321

    Article  CAS  Google Scholar 

  35. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nano 6:11856–11862

    CAS  Google Scholar 

  36. Lu Y, Yu J, Ye W, Yao X, Zhou P, Zhang H, Zhao S, Jia L (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489

    Article  CAS  Google Scholar 

  37. Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li J, Shan G, Luo S-Z (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326

    Article  CAS  Google Scholar 

  38. Zhang J, Zhang X, Yang G, Chen J, Wang S (2013) A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Biosens Bioelectron 41:704–709

    Article  Google Scholar 

  39. L-h L, X-h Z, H-c S (2015) Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Biosens Bioelectron 72:300–305

    Article  Google Scholar 

  40. Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang H-H (2015) Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Anal Chem 87:11826–11831

    Article  CAS  Google Scholar 

  41. Shen P, Li W, Liu Y, Ding Z, Deng Y, Zhu X, Jin Y, Li Y, Li J, Zheng T (2017) High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Photonic Crystal Microsphere. Anal Chem 89:11862–11868

    Article  CAS  Google Scholar 

  42. Chu X, Dou X, Liang R, Li M, Kong W, Yang X, Luo J, Yang M, Zhao M (2016) A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A. Nano 8:4127–4133

    CAS  Google Scholar 

  43. Yang J, Gao P, Liu Y, Li R, Ma H, Du B, Wei Q (2015) Label-free photoelectrochemical immunosensor for sensitive detection of Ochratoxin A. Biosens Bioelectron 64:13–18

    Article  CAS  Google Scholar 

  44. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N, Wang C, Dong X, Huang X (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191

    Article  CAS  Google Scholar 

  45. Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D (2017) Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer–graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron 89:659–665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21505060), the Foundation of Jiangxi Educational Committee (GJJ150327), the Science Foundation of Jiangxi Province (20161BAB213073), Scientific Research Foundation of Jiangxi Normal University, the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201710), Outstanding Youth Funds of Jiangxi Normal University and the Advanced Research Fund of Quanzhou Normal University for Young Doctor (2016QBKJ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Tang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 4499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Huang, Y., Cheng, Y. et al. Two-dimensional MoS2 as a nano-binder for ssDNA: Ultrasensitive aptamer based amperometric detection of Ochratoxin A. Microchim Acta 185, 162 (2018). https://doi.org/10.1007/s00604-018-2706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2706-9

Keywords

Navigation