Skip to main content
Log in

Amperometric sensing of hydroquinone using a glassy carbon electrode modified with a composite consisting of graphene and molybdenum disulfide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Well-dispersed composites of graphene and molybdenum disulfide were synthesized without using a mediator. The composites were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical properties of a glassy carbon electrode (GCE) modified with the graphene/MoS2 composite were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. Hydroquinone was selected as a model target to show the sensing capability of the modified GCE. The GCE, best operated at a working voltage of 0.10 V (vs. Ag/AgCl), exhibits excellent catalytic activity towards hydroquinone, with a linear response in the 0.5 to 300 μM concentration range and a 37 nM detection limit (at an S/N ratio of 3). The superior performance of the GCE is attributed to the synergistic effects of graphene and MoS2.

Well-dispersed graphene/MoS2 without non-covalent modification was prepared and used to fabricate an electrochemical sensor for the differential pulse voltammetric (DPV) detection of hydroquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Y, Liu X, Zhang S, Yang L, Liu M, Zhang Y, Yao S (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685

    Article  CAS  Google Scholar 

  2. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313

    Article  CAS  Google Scholar 

  3. Aragó M, Ariño C, Dago À, Díaz-Cruz JM, Esteban M (2016) Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration. Talanta 160:138–143

    Article  Google Scholar 

  4. Asan A, Isildak I (2003) Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J Chromatogr A 988:145–149

    Article  CAS  Google Scholar 

  5. Narajji C, Patel HR, Karvekar MD, Suresh Babu AR (2011) Simultaneous estimation of aceclofenac, paracetamol and tizanidine in their combined dosage forms by spectrophotometric and RP- HPLC method. J Anal Bioanal Tech 2:123

    Article  Google Scholar 

  6. Li S, Li X, Xu J, Wei X (2008) Flow-injection chemiluminescence determination of polyphenols using luminol–NaIO4–gold nanoparticles system. Talanta 75:32–37

    Article  CAS  Google Scholar 

  7. Nagaraja P, Vasantha RA, Sunitha KR (2001) A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta 55:1039–1046

    Article  CAS  Google Scholar 

  8. Soltani H, Pardakhty A, Ahmadzadeh S (2016) Determination of hydroquinone in food and pharmaceutical samples using a voltammetric based sensor employing NiO nanoparticle and ionic liquids. J Mol Liq 219:63–67

    Article  CAS  Google Scholar 

  9. Lai T, Cai W, Dai W, Ye J (2014) Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochim Acta 138:48–55

    Article  CAS  Google Scholar 

  10. Ahammad AJS, Rahman MM, Xu GR, Kim S, Lee JJ (2011) Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode. Electrochim Acta 56:5266–5271

    Article  CAS  Google Scholar 

  11. Vilian ATE, Chen S, Huang L, Ali MA, Al-Hemaid FMA (2014) Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2-RGO/GCE composite modified glassy carbon electrode. Electrochim Acta 125:503–509

    Article  CAS  Google Scholar 

  12. Jing H, Wang S, Deng W, Zhang Y, Tan Y, Xie Q, Ma M (2017) Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta 164:300–306

    Article  Google Scholar 

  13. Unnikrishnan B, Ru P, Chen S (2012) Electrochemically synthesized Pt-MnO2 composite particles for simultaneous determination of catechol and hydroquinone. Sensors Actuators B Chem 169:235–242

    Article  CAS  Google Scholar 

  14. Li D, Li Y, Song W, Long Y (2010) Simultaneous determination of dihydroxybenzene isomers using disposable screen-printed electrode modified bymultiwalled carbon nanotubes and gold nanoparticles. Anal Methods 2:837–843

    Article  CAS  Google Scholar 

  15. Qi H, Zhang C (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:832–838

    Article  CAS  Google Scholar 

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  17. Kubendhiran S, Sakthinathan S, Chen S, Tamizhdurai P, Shanthi K, Karuppiah C (2017) Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J Colloid Interface Sci 497:207–216

    Article  CAS  Google Scholar 

  18. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:301–306

    Article  CAS  Google Scholar 

  19. Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  CAS  Google Scholar 

  20. Chekin F, Boukherroub R, Szunerits S (2017) MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma. Mater Sci Eng C Mater Biol Appl 73:627–632

    Article  CAS  Google Scholar 

  21. Feng Q, Duan K, Ye X, Lu D, Du Y, Wang C (2014) A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sensors Actuators B Chem 192:1–8

    Article  CAS  Google Scholar 

  22. Bai W, Huang H, Li Y, Zhang H, Liang B, Guo R, Du L, Zhang Z (2014) Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochim Acta 117:322–328

    Article  CAS  Google Scholar 

  23. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594

    Article  CAS  Google Scholar 

  24. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  CAS  Google Scholar 

  25. Tashkhourian J, Daneshia M, Nami-Anaa F, Behbahani M, Bagheri A (2016) Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. J Hazard Mater 318:117–127

    Article  CAS  Google Scholar 

  26. Chen Q, Min X, Chen D, Zhou J, Li Y, Xie Z, Liu P, Cai W, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J Electroanal Chem 789:114–122

    Article  CAS  Google Scholar 

  27. Song D, Xia J, Zhang F, Bi S, Xiang W, Xia L, Li Y, Li Y, Xia L (2015) Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors Actuators B Chem 206:111–118

    Article  CAS  Google Scholar 

  28. Wang Y, Qu J, Li S, Dong Y, Qu J (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchim Acta 182(13-14):2277–2283

    Article  CAS  Google Scholar 

  29. Peng J, Feng Y, Han XX, Gao ZN (2016) Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183(7):2289–2296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Scientific Research Program of Shaanxi Provincial Education Department (No. 16JK1771), Program for Key Science and Technology Innovation Team in Shaanxi Province (No. 2014KCT-27), and Basic Research and Application Funding of Science and Technology Department of Sichuan Province (No. 2017JY0248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huayu Huang or Kunping Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, J., Cheng, M. et al. Amperometric sensing of hydroquinone using a glassy carbon electrode modified with a composite consisting of graphene and molybdenum disulfide. Microchim Acta 184, 4803–4808 (2017). https://doi.org/10.1007/s00604-017-2531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2531-6

Keywords

Navigation