Skip to main content
Log in

Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel dual-peptide recognition strategy was designed for sandwich fluorimetric detection of Staphylococcus aureus (S. aureus) utilizing the affinity of bacterial cells for certain peptides. A phage-display peptide derived from a random peptide library was used to functionalize magnetic particles and to specifically capture S. aureus. Magainin I is a broad-spectrum antimicrobial peptide that binds to cell membranes of most bacteria. It was used as a second recognition peptide to form a sandwich complex with S. aureus. By using fluorescein isothiocyanate as the fluorescent label and working at excitation/emission wavelengths of 488/525 nm, S. aureus can be directly detected in the 10 to 10,000 cfu·mL−1 concentration range, with a detection limit as low as 9 cfu·mL−1. The whole detection process can be completed within 90 min. This strategy was successfully applied to the detection of S. aureus in spiked lake water, human urine and apple juice. Respective recovery values ranged from 81% to 110%. The assay is highly sensitive and specific, and fast. The use of synthetic peptides shows many advantages such as lower cost, higher stability and ease of chemical modification compared to other molecular recognition agents such as antibodies, bacteriophages, or aptamers. In our perception, this detection scheme may be extended to many other pathogens if phage-displayed peptides specific for other bacteria are available.

Schematic of a novel dual-peptide recognition strategy for sandwich fluorimetric detection of Staphylococcus aureus utilizing the affinity of bacterial cells for peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rozemeijer W, Fink P, Rojas E, Jones CH, Pavliakova D, Giardina P, Murphy E, Liberator P, Jiang Q, Girgenti D, Peters RP, Savelkoul PH, Jansen KU, Anderson AS, Kluytmans J (2015) Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease. PLoS One 10:116945

    Article  Google Scholar 

  2. Lowy FD (1998) Staphylococcus aureus Infections. N Engl J Med 339:2025–2027

    Article  Google Scholar 

  3. Paule SM, Mehta M, Hacek DM, Gonzalzles TM, Robicsek A, Peterson LR (2009) Chromogenic media vs real-time PCR for nasal surveillance of methicillin-resistant Staphylococcus aureus impact on detection of MRSA-positive persons. Am J Clin Pathol 131:532–539

    Article  CAS  Google Scholar 

  4. Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  5. Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, Omizu Y, Kishi Y, Yagihashi A, Kurokawa I (1994) Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain-reaction. Epidemiol Infect 113:259–266

    Article  CAS  Google Scholar 

  6. Wang H, Chen HW, Hupert ML, Chen PC, Pittman PT, Goettert J, Murphy MC, Williams D, Barany F (2012) Fully integrated thermoplastic genosensor for the highly sensitive detection and identification of mulit-drug-resistant tuberculosis. Angew Chem Int Ed 51:4349–4353

    Article  CAS  Google Scholar 

  7. Li YW, Yan XH, Feng XJ, Wang J, Du W, Wang YC, Chen P, Xiong L, Liu BF (2014) Agarose-based microfluidic device for point-of-care concentration and detection of pathogen. Anal Chem 86:10653–10659

    Article  CAS  Google Scholar 

  8. Bhardwaj N, Bhardwaj SK, Mehta J, Mohanta GC, Deep A (2016) Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Anal Biochem 505:18–25

    Article  CAS  Google Scholar 

  9. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC (2013) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 3:31863–31870

    Google Scholar 

  10. Carrillo-Carrion C, Simonet BM, Valcarcel M (2011) Colistin-functionalised CdSe/ZnS quantum dots as fluorescent probe for the rapid detection of Escherichia coli. Biosens Bioelectron 26:4368–4374

    Article  CAS  Google Scholar 

  11. Yu JP, Zhang Y, Zhang Y, Li H, Yang H, Wei HP (2016) Sensitive and rapid detection of Staphylococcus aureus in milk via cell binding domain of lysin. Biosens Bioelectron 77:366–371

    Article  CAS  Google Scholar 

  12. Dechtrirat D, Gajovic-Eichlmann N, Wojick F, Hartmann L, Bier FF, Scheller FW (2014) Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli. Biosens Bioelectron 58:1–8

    Article  CAS  Google Scholar 

  13. Wu SJ, Duan N, Gu HJ, Hao LL, Ye H, Gong WH, Wang ZP (2016) A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins 8:176–196

    Article  Google Scholar 

  14. Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107:19207–19212

    Article  CAS  Google Scholar 

  15. Kulagina NV, Lassman ME, Ligler FS, Taitt CR (2005) Antimicrobial peptide for detection of bacteria in biosensor assays. Anal Chem 77:6504–6508

    Article  CAS  Google Scholar 

  16. Nielsen KM, Kyneb MH, Alstrup AKO, Jensen JJ, Bender D, Schønheyder HC, Afzelius P, Nielsen OL, Jensen SB (2016) 68Ga-labeled phage-display selected peptides as tracers for positron emission tomography imaging of Staphylococcus aureus biofilm-associated infections: selection, radiolabelling and preliminary biological evaluation. Nucl Med Biol 43:593–605

    Article  CAS  Google Scholar 

  17. Liu P, Han L, Wang F, Petrenko VA, Liu A (2016) Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosens Bioelectron 15:195–203

    Article  Google Scholar 

  18. Rao SS, Mohan KVK, Gao YM, Atreya CD (2013) Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. Mirobiol Res 168:106–112

    Article  CAS  Google Scholar 

  19. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440

  20. Xue XH, Pan J, Xie HM, Wang JH, Zhang S (2009) Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta 77:1808–1813

    Article  CAS  Google Scholar 

  21. Wang XL, Huang YK, Wu SJ, Duan N, Xu BC, Wang ZP (2016) Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanopartilces as lables. Int J Food Microbiol 237:172–179

    Article  Google Scholar 

  22. Zhang H, Ma XY, Liu Y, Duan Nuo WSJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    Article  CAS  Google Scholar 

  23. Shojaei TR, Swlleh MAM, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Raheleh J (2014) Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 8:600–608

    Article  Google Scholar 

  24. Morton J, Karoonuthaisiri N, Stewart LD, Oplatowska M, Elliott CT, Grant IR (2013) Production and evaluation of the utility of novel phage display-derived peptide ligands to Salmonella spp for magnetic separation. J Appl Microbiol 115:271–281

    Article  CAS  Google Scholar 

  25. Rao SS, Mohan KVK, Atreya CD (2013) A peptide derived from phage display library exhibits antibacterial activity against E. coli and Pseudomonas aeruginosa. PloS ONE 2: 56081

  26. Hao LL, Gu HJ, Duan N, Wu SJ, Ma XY, Xia Y, Tao Z, Wang ZP (2017) An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Anal Chim Acta 959:83–90

    Article  CAS  Google Scholar 

  27. Xiong J, Wang WW, Zhou YL, Kong WJ, Wang ZX, Fu ZF (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183:1507–1512

    Article  CAS  Google Scholar 

  28. Zhang B, Li HH, Pan WX, Chen QS, Ouyang Q, Zhao JW (2016) Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food Anal Methods 6:2036–2045

    Google Scholar 

  29. Wang BB, Wang Q, Ma MH, Cai ZX (2015) The inhibition of fluorescence resonance energy transfer between multicolor quantum dots for rapid and sensitive detection of Staphylococcus aureus. Spectrochim Acta 135:428–434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (21475107) and the Fundamental Research Funds for the Central Universities (XDJK2017A008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Fu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Wang, W. & Fu, Z. Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles. Microchim Acta 184, 4197–4202 (2017). https://doi.org/10.1007/s00604-017-2396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2396-8

Keywords

Navigation