Skip to main content
Log in

Visual and photometric determination of histamine using unmodified gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric approach for on-site monitoring of histamine based on the use of gold nanoparticles (AuNPs) that have a negatively charged surface due to the presence of adsorbed citrate ions. Histamine has two basic functional groups, an aliphatic amino group and an imidazole ring. Under the experimental conditions, the protonated aliphatic amino group drives the imidazole ring into close proximity to the AuNPs due to electrostatic attraction. This accelerates the replacement of citrate ions by the imidazole ring because of the strong affinity between imidazole and AuNPs. As a consequence, the two groups synergistically induce the aggregation of the AuNPs and trigger a visible color change from red to blue. The minimum visually detectable histamine concentration is 1.81 μM, which is comparable to the limit of detection (LOD) of the electrochemical approaches at a signal-to-noise ratio of 3:1. When using absorbance at 522 nm, the LOD is lowered to 38 nM. The method was applied to the determination of histamine in fish samples.

Schematic of the detection scheme: Histamine induces gold nanoparticle aggregation and triggers a visible color change. The minimum visually detectable histamine concentration by bare eye is 1.81 μM. When using absorbance at 522 nm, the LOD is lowered to 38 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Monroe EW, Daly AF, Shalhoub RF (1997) Appraisal of the validity of histamine-induced wheal and flare to predict the clinical efficacy of antihistamines. J Allergy Clin Immunol 99(2):S798–S806. doi:10.1016/s0091-6749(97)70128-3

    Article  CAS  Google Scholar 

  2. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672. doi:10.1016/s0301-0082(00)00039-3

    Article  CAS  Google Scholar 

  3. Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439(2):193–207. doi:10.1002/cne.1342

    Article  CAS  Google Scholar 

  4. Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Aliment Pharm Therap 113(1):1–15. doi:10.1016/j.pharmthera.2006.06.008

    Article  CAS  Google Scholar 

  5. Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199(2):183–189. doi:10.1016/j.bbr.2008.12.010

    Article  CAS  Google Scholar 

  6. Veseli A, Vasjari M, Arbneshi T, Hajrizi A, Svorc L, Samphao A, Kalcher K (2016) Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sensor Actuat B-Chem 228:774–781. doi:10.1016/j.snb.2016.01.085

    Article  CAS  Google Scholar 

  7. Todoroki K, Ishii Y, Miyauchi C, Kitagawa S, Min JZ, Inoue K, Yamanaka T, Suzuki K, Yoshikawa Y, Ohashi N, Toyo'oka T (2014) Simple and sensitive analysis of histamine and tyramine in Japanese soy sauces and their intermediates using the stable isotope dilution HILIC-MS/MS method. J Agric Food Chem 62(26):6206–6211. doi:10.1021/jf500767p

    Article  CAS  Google Scholar 

  8. Preti R, Antonelli ML, Bernacchia R, Vinci G (2015) Fast determination of biogenic amines in beverages by a core-shell particle column. Food Chem 187:555–562. doi:10.1016/j.foodchem.2015.04.075

    Article  CAS  Google Scholar 

  9. Carralero V, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles. Electroanalysis 17(4):289–297. doi:10.1002/elan.200403101

    Article  CAS  Google Scholar 

  10. Uzasci S, Baskan S, Erim FB (2012) Biogenic amines in wines and pomegranate molasses-a non-ionic micellar electrokinetic chromatography assay with laser-induced fluorescence detection. Food Anal Methods 5(1):104–108. doi:10.1007/s12161-011-9220-6

    Article  Google Scholar 

  11. Daniel D, dos Santos VB, Vidal DTR, do Lago CL (2015) Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J Chromatogr A 1416:121–128. doi:10.1016/j.chroma.2015.08.065

    Article  CAS  Google Scholar 

  12. Li Y, Kobayashi M, Furui K, Soh N, Nakano K, Imato T (2006) Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction. Anal Chim Acta 576(1):77–83. doi:10.1016/j.aca.2006.01.078

    Article  CAS  Google Scholar 

  13. Lim TK, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75(14):3316–3321. doi:10.1021/ac020749n

    Article  CAS  Google Scholar 

  14. Basozabal I, Guerreiro A, Gomez-Caballero A, Goicolea MA, Barrio RJ (2014) Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens Bioelectron 58:138–144. doi:10.1016/j.bios.2014.02.054

    Article  CAS  Google Scholar 

  15. Peeters M, Kobben S, Jimenez-Monroy KL, Modesto L, Kraus M, Vandenryt T, Gaulke A, van Grinsven B, Ingebrandt S, Junkers T, Wagner P (2014) Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition-fragmentation chain transfer polymerization. Sensor Actuat B-Chem 203:527–535. doi:10.1016/j.snb.2014.07.013

    Article  CAS  Google Scholar 

  16. Gumpu MB, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2014) Development of electrochemical biosensor with ceria-PANI core-shell nano-interface for the detection of histamine. Sensor Actuat B-Chem 199:330–338. doi:10.1016/j.snb.2014.04.009

    Article  CAS  Google Scholar 

  17. Henao-Escobar W, del Torno-de Roman L, Dominguez-Renedo O, Alonso-Lomillo MA, Arcos-Martinez MJ (2016) Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine. Food Chem 190:818–823. doi:10.1016/j.foodchem.2015.06.035

    Article  CAS  Google Scholar 

  18. Leonardo S, Campàs M (2016) Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchim Acta 183:1881–1890. doi:10.1007/s00604-016-1821-8

    Article  CAS  Google Scholar 

  19. Leng P, Feng Z, Yin B, Ye B (2015) A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase. Chem Commun 41:8712–8714. doi:10.1039/c5cc02370j

    Article  Google Scholar 

  20. Patange SB, Mukundan MK, Kumar KA (2005) A simple and rapid method for colorimetric determination of histamine in fish flesh. Food Control 16:465–472. doi:10.1016/j.foodcont.2004.05.008

    Article  CAS  Google Scholar 

  21. Liu XJ, Wu ZJ, Zhang QQ, Zhao WF, Zong CH, Gai HW (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem 88(4):2119–2124. doi:10.1021/acs.analchem.5b03653

    Article  CAS  Google Scholar 

  22. Zhao WF, Jia W, Sun MM, Liu XJ, Zhang QQ, Zong CH, Qu J, Gai HW (2016) Colorimetric detection of Cu2+ by surface coordination complexes of polyethyleneimine-capped au nanoparticles. Sensors and Sensor Actuat B-Chem 223:411–416. doi:10.1016/j.snb.2015.09.119

    Article  CAS  Google Scholar 

  23. Li YR, Wang QR, Zhou XM, Wen CY, Yu JF, Han XG, Li XY, Yan ZF, Zeng JB (2016) A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core-shell nanoparticles. Sensor Actuat B-Chem 228:366–372. doi:10.1016/j.snb.2016.01.022

    Article  CAS  Google Scholar 

  24. Dharanivasan G, Riyaz SUM, Jesse DMI, Muthuramalingam TR, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6(14):11773–11785. doi:10.1039/c5ra25559g

    Article  CAS  Google Scholar 

  25. Ramon-Marquez T, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF (2016) Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer. Biosens Bioelectron 79:600–607. doi:10.1016/j.bios.2015.12.091

    Article  CAS  Google Scholar 

  26. Ni PJ, Sun YJ, Dai HC, Jiang S, Lu WD, Wang YL, Li Z, Li Z (2016) Colorimetric assay for acetylcholinesterase and inhibitor screening based on the Ag [I] ion-3,3′,5,5′-tetramethylbenzidine (TMB). Sensor Actuat B-Chem 226:104–109. doi:10.1016/j.snb.2015.11.076

    Article  CAS  Google Scholar 

  27. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/df9511100055

    Article  Google Scholar 

  28. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79(11):4215–4221. doi:10.1021/ac0702084

    Article  CAS  Google Scholar 

  29. Souza GR, Levin CS, Hajitou A, Pasqualini R, Arap W, Miller JH (2006) In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. Anal Chem 78(17):6232–6237. doi:10.1021/ac060483a

    Article  CAS  Google Scholar 

  30. Suganthi KS, Rajan KS (2012) Temperature induced changes in ZnO-water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf 55(25–26):7969–7980. doi:10.1016/j.ijheatmasstransfer.2012.08.032

    Article  CAS  Google Scholar 

  31. Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90(1):644–649. doi:10.1016/j.carbpol.2012.05.091

    Article  CAS  Google Scholar 

  32. Newman JDS, Blanchard GJ (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887

    Article  CAS  Google Scholar 

  33. Uznanski P, Kurjata J, Bryszewska E (2009) Modification of gold nanoparticle surfaces with pyrenedisulfide in ligand-protected exchange reactions. Mater Sci-Poland 27(3):659–670

    CAS  Google Scholar 

  34. Zhong JJ, Liao NB, Ding T, Ye XQ, Liu DH (2015) Liquid chromatographic method for toxic biogenic amines in foods using a chaotropic salt. J Chromatogr A 1406:331–336. doi:10.1016/j.chroma.2015.06.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was finically supported by the Natural Science Foundation of China (NSFC 21405064 and 21575053), the Natural Science Foundation of Jiangsu Normal University (14XLA07), the Jiangsu Province Natural Science Foundation of China (BK20140233), Higher Education Institute Natural Science Foundation (16KJA150006), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingquan Zhang or Xiaojun Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, S., Zhao, W. et al. Visual and photometric determination of histamine using unmodified gold nanoparticles. Microchim Acta 184, 2249–2254 (2017). https://doi.org/10.1007/s00604-017-2253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2253-9

Keywords

Navigation