Skip to main content
Log in

Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fluorometric assay for the antibiotic kanamycin that is making use of a fluorescein-labeled aptamer against kanamycin and carbon nanotubes (CNTs). It is found that CNTs do not quench the fluorescence of the duplex formed between FAM-labeled aptamer and its complementary DNA (cDNA). However, if kanamycin is added, it will bind to the aptamer, and this leads to dehybridization of the duplex upon which the fluorescence of the label is quenched by the CNTs present in solution. The method has an analytical range that extends from 1.0 to 50 nmol L-1 of kanamycin, and the detection limit is 0.4 nmol L−1. It was successfully employed to the detection of kanamycin in (spiked) milk samples and gave good recoveries.

The fluorescent detection platform uses double-stranded DNA and carbon nanotubes, is simple, and has a detection limit as low as 0.4 nmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chang MJ, Escobedo M, Anderson DC, Hiliman L (1975) Kanamycin and gentamicin treatment of neonatal sepsis and meningitis. Pediatrics 56(5):695–699

    CAS  Google Scholar 

  2. Stead DA (2000) Current methodologies for the analysis of aminoglycosides. J Chromatogr B 747:69–93

    Article  CAS  Google Scholar 

  3. Luft FC, Bloch R, Sloan RS, Yum MN, Costello R, Maxwell DR (1978) Comparative nephrotoxicity of aminoglycoside antibiotics in rats. J Infect Dis 138:541–545

    Article  CAS  Google Scholar 

  4. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, JK K, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181

    Article  CAS  Google Scholar 

  5. Kitasato I, Yokota M, Inouye S, Igarashi M (1990) Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of Guinea pigs. Chemotherapy 36:155–168

    Article  CAS  Google Scholar 

  6. EMEA/MRL/886/03-FINAL, CVMP Summary Report - Kanamycin 2 (2003) <http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014538.pdf>

  7. Oertel R, Neumeister V, Kirch W (2004) Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J Chromatogr A 1058:197–201

    Article  CAS  Google Scholar 

  8. Yu CZ, He YZ, GN F, Xie HY, Gan WE (2009) Determination of kanamycin a, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection. J Chromatogr B 877:333–338

    Article  CAS  Google Scholar 

  9. Zhou YX, Yang WJ, Zhang LY, Wang ZY (2007) Determination of kanamycin a in animal feeds by solid phase extraction and high performance liquid chromatography with pre-column derivatization and fluorescence detection. J Liq Chromatogr R T 30:1603–1615

    Article  CAS  Google Scholar 

  10. Long YH, Hernandez M, Kaale E, Schepdael AV, Roets E, Borrull F, Calull M, Hoogmartens J (2003) Determination of kanamycin in serum by solid-phase extraction, precapillary derivatization and capillary electrophoresis. J Chromatogr B 784:255–264

    Article  CAS  Google Scholar 

  11. Jin Y, Jang JW, Han CH, Lee MH (2006) Development of immunoassays for the detection of kanamycin in veterinary fields. J Vet Sci 7:111–117

    Article  Google Scholar 

  12. Chen YQ, Wang ZQ, Wang ZH, Tang SS, Zhu Y, Xiao XL (2008) Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J Agric Food Chem 56:2944–2952

    Article  CAS  Google Scholar 

  13. Chafer-Pericas C, Maquieira A, Puchades R (2010) Fast screening methods to detect antibiotic residues in food samples. Trends Anal Chem 29:1038–1049

    Article  CAS  Google Scholar 

  14. Sefah K, Shangguan D, Xiong XL, O’Donoghue MB, Tan WH (2010) Development of DNA aptamers using cell-SELEX. Nat Protoc 5:1169–1185

    Article  CAS  Google Scholar 

  15. Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Ann Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  16. Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32:5757–5765

    Article  CAS  Google Scholar 

  17. Zhang LB, Wei H, Li J, Li T, Li D, Li YH, Wang EK (2010) A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosens Bioelectron 25:1897–1901

    Article  CAS  Google Scholar 

  18. Zhu Z, Yang RH, You MX, Zhang XL, YR W, Tan WH (2010) Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 396:73–83

    Article  CAS  Google Scholar 

  19. Zhu Z, Tang ZW, Phillips JA, Yang RH, Wang H, Tan WH (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Article  CAS  Google Scholar 

  20. Zhang L, Li T, Li B, Li J, Wang E (2010) Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (II) ion. Chem Commun 46:1476–1478

    Article  CAS  Google Scholar 

  21. Yang RH, Jin JY, Chen Y, Shao N, Kang HZ, Xiao Z, Tang ZW, YR W, Zhu Z, Tan WH (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358

    Article  CAS  Google Scholar 

  22. Zhen SJ, Chen LQ, Xiao SJ, Li YF, Hu PP, Zhan L, Peng L, Song EQ, Huang CZ (2010) Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal Chem 82:8432–8437

    Article  CAS  Google Scholar 

  23. Wang Y, Li S, Zhang F, Lu Y, Yang B, Zhang F, Liang X (2016) Study of matrix effects for liquid chromatography–electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk. J Chromatogr A 1437:8–14

    Article  CAS  Google Scholar 

  24. Zhang L, Huang CZ, Li YF, Xiao SJ, Xie JP (2008) Label-free detection of sequence-specific DNA with multiwalled carbon nanotubes and their light scattering signals. J Phys Chem B 112:7120–7122

    Article  CAS  Google Scholar 

  25. Wang Y, Ma T, Ma S, Liu Y, Tian Y, Wang R, Jiang Y, Hou D, Wang J (2007) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184:203–210

    Article  Google Scholar 

  26. Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182:2567–2575

    Article  CAS  Google Scholar 

  27. Li H, Sun D, Liu Y, Liu Z (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156

    Article  CAS  Google Scholar 

  28. Zhou N, Zhang J, Tian Y (2014) Aptamer-based spectrophotometric detection of kanamycin in milk. Anal Methods 6:1569–1574

    Article  CAS  Google Scholar 

  29. Khabbaz LS, Hassanzadeh-Khayyat M, Zaree P, Ramezani M, Abnous K, Taghdisi SM (2015) Detection of kanamycin by using an aptamer-based biosensor using silica nanoparticles. Anal Methods 7:8611–8616

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund from innovation fund of Jiangxi academy of agricultural sciences (No. 2014CQN010) and National quality and safety risk assessment of livestock and poultry products in 2016(No. GJFP2016007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Guang Luo.

Ethics declarations

The author(s) declare that they have no competing of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q.G., Wei, B.H. & Luo, L.G. Aptamer based fluorometric determination of kanamycin using double-stranded DNA and carbon nanotubes. Microchim Acta 184, 627–632 (2017). https://doi.org/10.1007/s00604-016-2050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2050-x

Keywords

Navigation