Skip to main content
Log in

Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors demonstrate a non-enzymatic sensor for glucose that is making used of an electrode prepared from an ink composed of CuO, reduced graphene oxide and carbon nanotube (CuO/rGO/CNT) on various substrates via dipping and drying. The morphology of the CuO/rGO/CNT composite was characterized via scanning electron microscopy and its composition was confirmed via X-ray diffraction measurements. The stacking of individual rGO sheets is prevented in the rGO and CNT hybrid, and this creates large surface areas and allows for fast electron and mass transport. The composite was deposited on nickel foam and the resulting electrode is shown to be a viable amperometric sensor for glucose, with a sensitivity of 9278 μA⋅mM−1⋅cm−2 over the 10 to 1000 μM glucose concentration range. The sensor was applied to the determination of glucose in spiked human serum samples.

A non-enzymatic sensor for glucose that is making used of an electrode prepared from an ink composed of CuO, reduced graphene oxide and carbon nanotube on various substrates via facile dipping and drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Wu G, Cai Z, Oyama M, Chen X (2013) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 180:161–186. doi:10.1007/s00604-012-0923-1

    Article  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186. doi:10.1007/s00604-012-0923-1

    Article  CAS  Google Scholar 

  3. Zhong A, Luo X, Chen L, Wei S, Liang Y, Li X (2015) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182:1197–1204. doi:10.1007/s00604-014-1443-y

    Article  CAS  Google Scholar 

  4. Shi W, Ma Z (2010) Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens Bioelectron 26:1098–1103. doi:10.1016/j.bios.2010.08.072

    Article  CAS  Google Scholar 

  5. Bai H, Han M, Du Y, Bao J, Dai Z (2010) Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chem Commun 46:1739–1741. doi:10.1039/B921004K

    Article  CAS  Google Scholar 

  6. Zhang W-D, Chen J, Jiang L-C, Yu Y-X, Zhang J-Q (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265. doi:10.1007/s00604-010-0288-2

    Article  Google Scholar 

  7. Jung H, Lee SH, Yang J, Cho M, Lee Y (2014) Ni (OH) 2@ Cu dendrite structure for highly sensitive glucose determination. RSC Adv 4:47714–47720. doi:10.1039/c4ra05521g

    Article  CAS  Google Scholar 

  8. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens Bioelectron 75:15–22. doi:10.1016/j.bios.2015.08.008

    Article  CAS  Google Scholar 

  9. Lee SH, Yang J, Han YJ, Cho M, Lee Y (2015) Rapid and highly sensitive MnOx nanorods array platform for a glucose analysis. Sensors Actuators B 218:137–144. doi:10.1016/j.snb.2015.05.005

    Article  CAS  Google Scholar 

  10. Fan Z, Liu B, Li Z, Ma L, Wang J, Yang S (2014) One-pot hydrothermal synthesis of CuO with tunable morphologies on Ni foam as a hybrid electrode for sensing glucose. RSC Adv 4:23319–23326. doi:10.1039/c3ra47422d

    Article  CAS  Google Scholar 

  11. Cao F, Gong J (2012) Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Anal Chim Acta 723:39–44. doi:10.1016/j.aca.2012.02.036

    Article  CAS  Google Scholar 

  12. Zhu J, Li D, Chen H, Yang X, Lu L, Wang X (2004) Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett 58:3324–3327. doi:10.1016/j.matlet.2004.06.03

    Article  CAS  Google Scholar 

  13. Reitz E, Jia W, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486. doi:10.1002/elan.200804327

    Article  CAS  Google Scholar 

  14. Wang G, Wei Y, Zhang W, Zhang X, Fang B, Wang L (2010) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87–92. doi:10.1002/chem.200501051

    Article  CAS  Google Scholar 

  15. Cherevko S, Chung CH (2010) The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80:1371–1377. doi:10.1016/j.talanta2009.09.038

    Article  CAS  Google Scholar 

  16. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407. doi:10.1016/j.bios.2009.10.038

    Article  CAS  Google Scholar 

  17. Wu H-X, Cao W-M, Li Y, Liu G, Wen Y, Yang H-F et al (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55:3734–3740. doi:10.1016/j.electacta.2010.02.017

    Article  CAS  Google Scholar 

  18. Purushothaman KK, Saravanakumar B, Babu IM, Sethuraman B, Muralidharan G (2014) Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 4:23485–23491. doi:10.1039/c4ra02107j

    Article  CAS  Google Scholar 

  19. Sarkar C, Dolui SK (2015) Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv 5:60763–60769. doi:10.1016/j.snb.2009.09.067

    Article  CAS  Google Scholar 

  20. Wang S, Liu E, Zhang X (2014) Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochim Acta 130:253–260. doi:10.1016/j.electacta.2014.03.030

    Article  CAS  Google Scholar 

  21. Nayak P, Nair SP, Ramaprabhu S (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta. doi:10.1007/s00604-015-1729-8

    Google Scholar 

  22. Sun T, Zhang Z, Xiao J, Chen C, Xiao F, Wang S, et al. (2013) Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci Rep 3. doi: 10.1038/srep02527

  23. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra‐flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–25560. doi:10.1002/adma.201204576

    Article  CAS  Google Scholar 

  24. Zhang Z, Sun T, Chen C, Xiao F, Gong Z, Wang S (2014) Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported pd nanoparticles: one-pot synthesis and its catalytic properties. ACS Appl Mater Interfaces 6:21035–21040. doi:10.1021/am505911h

    Article  CAS  Google Scholar 

  25. Kung C-W, Cheng Y-H, Ho K-C (2014) Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sensors Actuators B 204:159–166. doi:10.1016/j.snb.2014.07.102

    Article  CAS  Google Scholar 

  26. Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. Cryst Eng Commun 14:6710–6719. doi:10.1039/C2CE25509J

    Article  CAS  Google Scholar 

  27. Ye D, Liang G, Li H, Luo J, Zhang S, Chen H, Kong J (2013) A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116:223–230. doi:10.1016/j.talanta.2013.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20142010102690) and by Ministry of Science, ICT and Futrue Planning of Korea (Grant no. 2016–228389).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Misuk Cho or Youngkwan Lee.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Misuk Cho and Youngkwan Lee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Lee, S.H., Cho, M. et al. Nonenzymatic amperometric glucose sensor based on a composite prepared from CuO, reduced graphene oxide, and carbon nanotube. Microchim Acta 183, 3285–3292 (2016). https://doi.org/10.1007/s00604-016-1984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1984-3

Keywords

Navigation