Skip to main content
Log in

Hydrogen peroxide sensor based on a stainless steel electrode coated with multi-walled carbon nanotubes modified with magnetite nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) were decorated with magnetite (Fe3O4) nanoparticles and then used to modify a stainless steel electrode. The Fe3O4/MWCNTs composite was characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction patterns. Electrochemical properties of the modified electrode revealed a substantial catalytic activity for the reduction of hydrogen peroxide. The relationship between peak current and the concentration of hydrogen peroxide was linear in the range from 0.06 mmol L−1 to 0.36 mmol L−1, and the lowest detectable concentration is 0.01 mmol·L−1 (S/N = 3). The modified stainless steel electrode displays excellent stability.

TEM image of Fe3O4/MWCNTs nanocomposites (left) and SEM image of stainless steel after loading Fe3O4/MWCNTs nanocomposites (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang HY, Park SM (2007) Polypyrrole-based optical probe for a hydrogen peroxide assay. Anal Chem 79:240–245

    Article  CAS  Google Scholar 

  2. Yang YF, Mu SL (2005) Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid. Biosens Bioelectron 21:74–78

    Article  CAS  Google Scholar 

  3. Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    Article  CAS  Google Scholar 

  4. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    Article  CAS  Google Scholar 

  5. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407

    Article  CAS  Google Scholar 

  6. Xu Q, Zhu JJ, Hu XY (2007) Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction. Anal Chim Acta 597:151–156

    Article  CAS  Google Scholar 

  7. Chen HJ, Dong SJ (2007) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived ceramic–carbon nanotube nanocomposite film. Biosens Bioelectron 22:1811–1815

    Article  CAS  Google Scholar 

  8. Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ (2004) An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol–gel derived carbon ceramic electrode. Bioelectrochemistry 65:33–39

    Article  CAS  Google Scholar 

  9. Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977

    Article  CAS  Google Scholar 

  10. Kafi AKM, Wu GS, Chen AC (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566–571

    Article  CAS  Google Scholar 

  11. Zhao GC, Xu MQ, Zhang Q (2008) A novel hydrogen peroxide sensor based on the redox of ferrocene on room temperature ionic liquid film. Electrochem Commun 10:1924–1926

    Article  CAS  Google Scholar 

  12. Schäferling M, Grögel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  13. Kotouček M, Opravilová M (1996) Voltammetric behaviour of some nitropesticides at the mercury drop electrode. Anal Chim Acta 329:73–81

    Article  Google Scholar 

  14. Guiberteau A, Díaz TG, Salinas F, Ortiz JM (1995) Indirect voltammetric determination of carbaryl and carbofuran using partial least-squares calibration. Anal Chim Acta 305:219–226

    Article  CAS  Google Scholar 

  15. Švancara I, Vytřas K, Barek J, Zima J (2001) Carbon paste electrodes in modern electroanalysis. Crit Rev Anal Chem 31:311–345

    Article  Google Scholar 

  16. Zima J, Svancara I, Barek J, Vytras K (2009) Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit Rev Anal Chem 39:204–227

    Article  CAS  Google Scholar 

  17. Li JN, Liu SM, Mao X, Gao P, Yan ZH (2004) Trace determination of rare earths by adsorption voltammetry at a carbon paste electrode. J Electroanal Chem 561:137–142

    Article  CAS  Google Scholar 

  18. Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21

    Article  CAS  Google Scholar 

  19. Zhang LH, Zhai YM, Gao N, Wen D, Dong SJ (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem Commun 10:1524–1526

    Article  CAS  Google Scholar 

  20. Wang Q, Zheng J (2010) Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim Acta 169:361–365

    Article  CAS  Google Scholar 

  21. Li J, Yuan R, Chai Y, Zhang T, Che X (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171:125–131

    Article  CAS  Google Scholar 

  22. Wang AJ, Zhang PP, Li YF, Feng JJ, Dong WJ, Liu XY (2011) Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175:31–37

    Article  CAS  Google Scholar 

  23. Mosbach K, Anderson L (2007) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270:259–261

    Article  Google Scholar 

  24. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Google Scholar 

  25. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654

    Article  CAS  Google Scholar 

  26. Katz E, Weizmann Y, Willner I (2005) Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles. J Am Chem Soc 127:9191–9200

    Article  CAS  Google Scholar 

  27. Cheng GF, Zhao J, Tu YH, He PG, Fang YZ (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533:11–16

    Article  CAS  Google Scholar 

  28. Costa RCC, Lelis MFF, Oliveira LCA, Fabris JD, Ardisson JD, Rios RRVA, Silva CN, Lago RM (2006) Novel active heterogeneous Fenton system based on Fe3-xMxO4(Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J Hazard Mater B129:171–178

    Article  Google Scholar 

  29. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  30. Kim JH, Nam K-W, Ma SB, Kim KB (2006) Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon 44:1963–1968

    Article  CAS  Google Scholar 

  31. Lin Y, Watson KA, Ghose S, Smith JG, Williams TV, Crooks RE, Cao W, Connell JW (2009) Direct mechanochemical formation of metal nanoparticles on carbon nanotubes. J Phys Chem C 113:14858–14862

    Article  CAS  Google Scholar 

  32. Bui M-PN, Lee S, Han KN, Pham X-H, Li CA, Choo J, Seong GH (2009) Electrochemical patterning of gold nanoparticles on transparent single-walled carbon nanotube films. Chem Commun 45:5549–5551

    Google Scholar 

  33. Hu XB, Liu BZ, Deng YH, Cheng HZ, Luo S, Sun C, Yang P, Yang SG (2011) Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl Catal B Environ 107:274–283

    Article  CAS  Google Scholar 

  34. Liu Y, Jiang W, Wang Y, Zhang XJ, Song D, Li FS (2009) Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid–liquid interface using oleate as surfactant and reactant. J Magn Magn Mater 321:408–412

    Article  CAS  Google Scholar 

  35. Tiwari S, Phase DM, Choudhary RJ (2008) Probing antiphase boundaries in Fe3O4 thin films using micro-Raman spectroscopy. Appl Phys Lett 93:234108

    Article  Google Scholar 

  36. Qian WZ, Liu T, Wei F, Wang ZW, Luo GH, Yu H, Li ZF (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617

    Article  CAS  Google Scholar 

  37. Kim UJ, Furtado CA, Liu XM, Chen GG, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445

    Article  CAS  Google Scholar 

  38. Mishra AK, Ramaprabhu S (2010) Magnetite decorated Multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem C 114:2583–2590

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wang, C. Hydrogen peroxide sensor based on a stainless steel electrode coated with multi-walled carbon nanotubes modified with magnetite nanoparticles. Microchim Acta 179, 329–335 (2012). https://doi.org/10.1007/s00604-012-0899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0899-x

Keywords

Navigation