Skip to main content
Log in

A sensitive chemiluminescence method for the determination of cysteine based on silver nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a sensitive chemiluminescent (CL) assay for cysteine. It is based on the use of water-soluble and fluorescent silver nanoclusters (Ag NCs) which are found to be able to strongly enhance the weak CL signal resulting from the redox reaction between Ce(IV) ion and sulfite ion. This enhancement is inhibited by cysteine under appropriate conditions. Taking advantage of this specific CL inhibition, a novel CL method for the sensitive and selective detection of cysteine was developed. This effect is interpreted in terms of an electronic energy transfer from excited state intermediate sulfur dioxide (originating from the CL reaction between Ce(IV) and sulfite ions) to the Ag-NCs. The latter become electronically excited and thus can act as a new source of emission. The method was applied to the determination of cysteine in the range from 5.0 nM to 1.0 μM, with a detection limit at 2.5 nM (S/N = 3).

In the presence of Ag NCs that can act as luminophors and energy acceptors, the weak CL signal resulting from the redox reaction between Ce (IV) ion and sulfite ion can be significantly enhanced, and this enhanced CL system can then be inhibited by cysteine under suitable conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y (2004) Cysteine-induced hypoglycemic brain damage: an alternative mechanism to excitotoxicity. Amino Acids 26(2):163–168

    Article  CAS  Google Scholar 

  2. Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73(24):5972–5978

    Article  CAS  Google Scholar 

  3. Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8(2):529–533

    Article  CAS  Google Scholar 

  4. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134(7):1361–1365

    Article  CAS  Google Scholar 

  5. Shang L, Dong S (2009) Sensitive detection of cysteine based on fluorescent silver clusters. Biosens Bioelectron 24(6):1569–1573

    Article  CAS  Google Scholar 

  6. Xie WY, Huang WT, Li NB, Luo HQ (2012) Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem Commun 48(1):82–84

    Article  CAS  Google Scholar 

  7. Yang X, Guo Y, Strongin RM (2011) Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed 50(45):10690–10693

    Article  CAS  Google Scholar 

  8. Li G, Yang J, Zheng X, Meng M, Cao J (2010) A novel electrogenerated chemiluminescence sensing system for cystine determination based on its electrochemical parallel catalytic reaction. Microchim Acta 168(3–4):277–282

    CAS  Google Scholar 

  9. Sattarahmady N, Heli H (2011) An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core–shell structure. Anal Biochem 409(1):74–80

    Article  CAS  Google Scholar 

  10. Perevezentseva D, Gorchakov E (2012) Voltammetric determination of cysteine at a graphite electrode modified with gold nanoparticles. J Solid State Electrochem 16(7):2405–2410

    Google Scholar 

  11. Yang P, Chen Y, Zhu Q, Wang F, Wang L, Li Y (2008) Sensitive chemiluminescence method for the determination of glutathione, l-cysteine and 6-mercaptopurine. Microchim Acta 163(3–4):263–269

    CAS  Google Scholar 

  12. Narayanan SS, Pal SK (2006) Aggregated CdS quantum dots: host of biomolecular ligands. J Phys Chem B 110(48):24403–24409

    Article  CAS  Google Scholar 

  13. Kanwal S, Traore Z, Zhao C, Su X (2010) Enhancement effect of CdTe quantum dots–IgG bioconjugates on chemiluminescence of luminol–H2O2 system. J Lumin 130(10):1901–1906

    Article  CAS  Google Scholar 

  14. Lin C-AJ, Yang T-Y, Lee C-H, Huang SH, Sperling RA, Zanella M, Li JK, Shen J-L, Wang H-H, Yeh H-I, Parak WJ, Chang WH (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3(2):395–401

    Article  CAS  Google Scholar 

  15. Zhang M, Yuan R, Chai Y, Chen S, Zhong H, Wang C, Cheng Y (2012) A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens Bioelectron 32(1):288–292

    Article  CAS  Google Scholar 

  16. Lowry M, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Warner IM (2008) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 80(12):4551–4574

    Article  CAS  Google Scholar 

  17. Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77(10):3324–3329

    Article  CAS  Google Scholar 

  18. Guo JZ, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111(33):12254–12259

    Article  CAS  Google Scholar 

  19. Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc Natl Acad Sci U S A 104(31):12616–12621

    Article  CAS  Google Scholar 

  20. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889

    Article  CAS  Google Scholar 

  21. Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem Commun 9:1088–1090

    Article  Google Scholar 

  22. Cui H, Zhang Z-F, Shi M-J, Xu Y, Wu Y-L (2005) Light emission of gold nanoparticles induced by the reaction of Bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide. Anal Chem 77(19):6402–6406

    Article  CAS  Google Scholar 

  23. Pu W, Zhao H, Huang C, Wu L, Xua D (2012) Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchim Acta 177(1–2):137–144

    CAS  Google Scholar 

  24. Strelow F, Henglein A (1995) Time resolved chemisorption of I- and SH- on colloidal silver particles (A stopped-flow study). J Phys Chem 99(31):11834–11838

    Article  CAS  Google Scholar 

  25. Chang C-C, Lin S, Wei S-C, Chu-Su Y, Lin C-W (2012) Surface plasmon resonance detection of silver ions and cysteine using DNA intercalator-based amplification. Anal Bioanal Chem 402(9):2827–2835

    Article  CAS  Google Scholar 

  26. Hao W, McBride A, McBride S, Gao JP, Wang ZY (2011) Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma. J Mater Chem 21(4):1040

    Article  CAS  Google Scholar 

  27. Takeuchi K, Ibusuki T (1985) Determination of traces of hydrogensulfite by chemiluminescence with cerium(IV) sulfate as the reagent. Anal Chim Acta 174:359–363

    Article  CAS  Google Scholar 

  28. Huang Y, Zhang C, Zhang X, Zhang Z (1999) Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G. Anal Chim Acta 391(1):95–100

    Article  CAS  Google Scholar 

  29. Yu X, Jiang Z, Wang Q, Guo Y (2010) Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Microchim Acta 171(1–2):17–22

    CAS  Google Scholar 

  30. Yu X, Bao J (2009) Determination of norfloxacin using gold nanoparticles catalyzed cerium(IV)–sodium sulfite chemiluminescence. J Lumin 129(9):973–978

    Article  CAS  Google Scholar 

  31. Lu C, Zu Y (2007) Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun 7(37):3871

    Article  Google Scholar 

  32. Zhang FX, Han L, Israel LB, Daras JG, Maye MM, Ly NK, Zhong C-J (2002) Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst 127(4):462–465

    Article  CAS  Google Scholar 

  33. Sudeep P, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127(18):6516–6517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Taishan Scholar Program of Shangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 776 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Wang, Q., Liu, X. et al. A sensitive chemiluminescence method for the determination of cysteine based on silver nanoclusters. Microchim Acta 179, 323–328 (2012). https://doi.org/10.1007/s00604-012-0893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0893-3

Keywords

Navigation