Skip to main content

Advertisement

Log in

Electrochemical lectin based biosensors as a label-free tool in glycomics

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Glycans and other saccharide moieties attached to proteins and lipids, or present on the surface of a cell, are actively involved in numerous physiological or pathological processes. Their structural flexibility (that is based on the formation of various kinds of linkages between saccharides) is making glycans superb "identity cards". In fact, glycans can form more "words" or "codes" (i.e., unique sequences) from the same number of "letters" (building blocks) than DNA or proteins. Glycans are physicochemically similar and it is not a trivial task to identify their sequence, or—even more challenging—to link a given glycan to a particular physiological or pathological process. Lectins can recognise differences in glycan compositions even in their bound state and therefore are most useful tools in the task to decipher the "glycocode". Thus, lectin-based biosensors working in a label-free mode can effectively complement the current weaponry of analytical tools in glycomics.This review gives an introduction into the area of glycomics and then focuses on the design, analytical performance, and practical utility of lectin-based electrochemical label-free biosensors for the detection of isolated glycoproteins or intact cells.

Scheme of the lectin biosensor operated in a label-free format of analysis for detection of a glycoprotein

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nature Methods 2:817–824. doi:10.1038/nmeth807

    Article  CAS  Google Scholar 

  2. Varki A, Cummings R, Esko J et al (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Gabius H-J, Siebert H-C, André S, Jiménez-Barbero J, Rüdiger H (2004) Chemical biology of the sugar code. ChemBioChem 5:740–764. doi:10.1002/cbic.200300753

    Article  CAS  Google Scholar 

  4. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313. doi:10.1016/j.tibs.2011.01.005

    Article  CAS  Google Scholar 

  5. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSystems 5:1087–1104. doi:10.1039/B907931A

    Article  CAS  Google Scholar 

  6. Cunningham S, Gerlach JQ, Kane M, Joshi L (2010) Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst 135:2471–2480. doi:10.1039/C0AN00276C

    Article  CAS  Google Scholar 

  7. Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of glycoconjugates. Chem Rev 111:4259–4307. doi:10.1021/cr200113w

    Article  CAS  Google Scholar 

  8. van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature 446:1105–1109. doi:10.1038/nature05757

    Article  CAS  Google Scholar 

  9. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364. doi:10.1126/science.1059820

    Article  CAS  Google Scholar 

  10. Mislovičová D, Katrlík J, Paulovičová E, Gemeiner P, Tkac J (2012) Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids Surf B: Biointerf 94:163–169. doi:10.1016/j.colsurfb.2012.01.036

    Article  CAS  Google Scholar 

  11. Banerjee DK (2012) N-glycans in cell survival and death: cross-talk between glycosyltransferases. Biochim Biophys Acta Gen Subj, in press. doi: 10.1016/j.bbagen.2012.01.013

  12. Mariño K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nature Chem Biol 6:713–723. doi:10.1038/nchembio.437

    Article  CAS  Google Scholar 

  13. Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9:3796–3801. doi:10.1002/pmic.200900096

    Article  CAS  Google Scholar 

  14. Lepenies B, Seeberger PH (2010) The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharm Immunotox 32:196–207. doi:10.3109/08923970903292663

    Article  CAS  Google Scholar 

  15. Horlacher T, Seeberger PH (2008) Carbohydrate arrays as tools for research and diagnostics. Chem Soc Rev 37:1414–1422. doi:10.1039/B708016F

    Article  CAS  Google Scholar 

  16. Laurent N, Voglmeir J, Flitsch SL (2008) Glycoarrays—tools for determining protein–carbohydrate interactions and glycoenzyme specificity. Chem Commun 4400–4412. doi:10.1039/B806983M

  17. Rillahan CD, Paulson JC (2011) Glycan microarrays for decoding the glycome. Annu Rev Biochem 80:797–823. doi:10.1146/annurev-biochem-061809-152236

    Article  CAS  Google Scholar 

  18. Rakus JF, Mahal LK (2011) New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu Rev Anal Chem 4:367–392. doi:10.1146/annurev-anchem-061010-113951

    Article  CAS  Google Scholar 

  19. Wu C, Wong C (2011) Chemistry and glycobiology. Chem Commun 47:6201–6207. doi:10.1039/C0CC04359A

    Article  CAS  Google Scholar 

  20. Voglmeir J, Sardzík R, Weissenborn MJ, Flitsch SL (2010) Enzymatic glycosylations on arrays. OMICS 14:437–444. doi:10.1089/omi.2010.0035

    Article  CAS  Google Scholar 

  21. Ghazarian H, Idoni B, Oppenheimer SB (2010) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247. doi:10.1016/j.acthis.2010.02.004

    Article  CAS  Google Scholar 

  22. Pang P, Chiu PCN, Lee C, Chang L, Panico M, Morris HR et al (2011) Human sperm binding is mediated by the sialyl-Lewisx oligosaccharide on the zona pellucida. Science 333:1761–1764. doi:10.1126/science.1207438

    Article  CAS  Google Scholar 

  23. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376. doi:10.1126/science.291.5512.2370

    Article  CAS  Google Scholar 

  24. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369. doi:10.1126/science.291.5512.2364

    Article  CAS  Google Scholar 

  25. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nature Rev Cancer 11:678–684. doi:10.1038/nrc3114

    Article  CAS  Google Scholar 

  26. Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E, Murakami K, et al. (2011) O-Linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell–matrix interactions. Nature Commun 2, Art No.: 583. doi:10.1038/ncomms1591

  27. Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta Gen Subj 1820:1347–1353. doi:10.1016/j.bbagen.2011.12.001

    Google Scholar 

  28. Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136. doi:10.1038/nrmicro2677

    CAS  Google Scholar 

  29. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163. doi:10.1021/cr078291i

    Article  CAS  Google Scholar 

  30. Bratosin D, Mazurier J, Debray H, Lecocq M, Boilly B et al (1995) Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span Glycoconj J 12:258–267. doi:10.1007/BF00731328

    CAS  Google Scholar 

  31. Marikovsky Y, Marikovsky M (2002) Clearance of senescent erythrocytes: wheat germ agglutinin distribution on young and old human erythrocytes. Glycoconj J 19:1–4. doi:10.1023/A:1022513327982

    Article  CAS  Google Scholar 

  32. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258. doi:10.1126/science.1209791

    Article  CAS  Google Scholar 

  33. Schauer R, Kamerling JP (2011) The chemistry and biology of Trypanosomal trans-sialidases: virulence factors in chagas disease and sleeping sickness. ChemBioChem 12:2246–2264. doi:10.1002/cbic.201100421

    Article  CAS  Google Scholar 

  34. Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H et al (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nature Methods 8:85–90. doi:10.1038/nmeth.1540

    Article  CAS  Google Scholar 

  35. Krishnamoorthy L, Bess JW Jr, Preston AB, Mahal LK et al (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nature Chem Biol 5:244–250. doi:10.1038/nchembio.151

    Article  CAS  Google Scholar 

  36. Hirabayashi J (2009) Glycome 'fingerprints' provide definitive clues to HIV origins. Nature Chem Biol 5:198–199. doi:10.1038/nchembio0409-198

    Article  CAS  Google Scholar 

  37. Katrlík J, Švitel J, Gemeiner P, Kožár T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418. doi:10.1002/med.20195 and references cited therein

    Google Scholar 

  38. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nature Rev Drug Discov 4:477–488. doi:10.1038/nrd1751

    Article  CAS  Google Scholar 

  39. Soundararajan V, Zheng S, Patel N, Warnock K, Raman R, Wilson IA, Raguram S, Sasisekharan V, Sasisekharan R (2011) Networks link antigenic and receptor-binding sites of influenza hemagglutinin: Mechanistic insight into fitter strain propagation. Sci Rep 1, Article number:200. doi:10.1038/srep00200

  40. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420-428. doi:10.1038/nature10831

    Google Scholar 

  41. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334:249–252. doi:10.1126/science.1211057

    Article  CAS  Google Scholar 

  42. Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR et al (2010) A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci USA 107:17107–17112. doi:10.1073/pnas.1002717107

    Article  CAS  Google Scholar 

  43. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P, Wang S et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103. doi:10.1126/science.1213256

    Article  CAS  Google Scholar 

  44. McLellan JS, Pancera M, Carrico C, Gorman J, Julien J-P, Khayat R et al (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–343. doi:10.1038/nature10696

    Article  CAS  Google Scholar 

  45. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475:110–113. doi:10.1038/nature10134

    Article  CAS  Google Scholar 

  46. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-Inflammatory activity with a recombinant IgG Fc. Science 320:373–376. doi:10.1126/science.1154315

    Article  CAS  Google Scholar 

  47. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673. doi:10.1126/science.1129594

    Article  CAS  Google Scholar 

  48. Garcia I, Marradi M, Penades S (2010) Glyconanoparticles: multifunctional nanomaterial for biomedical applications. Nanomedicine 5:777–792. doi:10.2217/nnm.10.48

    Article  CAS  Google Scholar 

  49. Van Bueren JJL, Rispens T, Verploegen S, Van Der Palen-Merkus T, Stapel S, Workman LJ et al (2011) Anti-galactose-α-1,3-galactose IgE from allergic patients does not bind α-galactosylated glycans on intact therapeutic antibody Fc domains. Nature Biotechnol 29:574–576. doi:doi:10.1038/nbt.1912

    Article  CAS  Google Scholar 

  50. Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V et al (2009) Lectinomics: II. A highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15. doi:10.1016/j.biotechadv.2008.07.003, and references cited therein

    Article  CAS  Google Scholar 

  51. El-Boubbou K, Huang X (2011) Glyco-nanomaterials: translating insights from the “sugar-code” to biomedical applications. Curr Med Chem 18:2060–2078

    Article  CAS  Google Scholar 

  52. Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nature Rev Mol Cell Biol 5:582–588. doi:10.1038/nrm1428

    Article  CAS  Google Scholar 

  53. Nilsson CL (2003) Lectins: proteins that interpret the sugar code. Anal Chem 75:348A–353A. doi:10.1021/ac031373w

    Article  Google Scholar 

  54. Turnbull JE, Field RA (2007) Emerging glycomics technologies. Nature Chem Biol 3:74–77. doi:10.1038/nchembio0207-74

    Article  CAS  Google Scholar 

  55. Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38:1333–1336. doi:10.1042/BST0381333

    Article  CAS  Google Scholar 

  56. Alley WR Jr, Vasseur JA, Goetz JA, Svoboda M, Mann BF, Matei DE, Menning N, Hussein A, Mechref Y, Novotny MV (2012) N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Prot Res 11:2282–2300. doi:10.1021/pr201070k

    Article  CAS  Google Scholar 

  57. Kolarich D, Lepenies B, Seeberger PH (2012) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16:214–220. doi:10.1016/j.cbpa.2011.12.006

    Article  CAS  Google Scholar 

  58. Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nature Biotechnol 20:1011–1017. doi:10.1038/nbt735

    Article  CAS  Google Scholar 

  59. Love KR, Seeberger PH (2002) Carbohydrate arrays as tools for glycomics. Angew Chem—Int Ed 41:3583–3586. doi:10.1002/1521-3773(20021004)41:19<3583::AID-ANIE3583>3.0.CO;2-P

    Article  CAS  Google Scholar 

  60. Mellet CO, Fernandez JMG (2002) Carbohydrate microarrays. ChemBioChem 3:819–822. doi:10.1002/1439-7633(20020902)3:9<819::AID-CBIC819>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  61. Park S, Shin I (2002) Fabrication of carbohydrate chips for studying protein–carbohydrate interactions. Angew Chem—Int Ed 41:3180–3182. doi:10.1002/1521-3773(20020902)41:17<3180::AID-ANIE3180>3.0.CO;2-S

    Article  CAS  Google Scholar 

  62. Wang D, Liu S, Trummer BJ, Deng C, Wang A (2002) Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol 20:275–281. doi:10.1038/nbt0302-275

    Article  CAS  Google Scholar 

  63. Houseman BT, Mrksich M (2002) Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 9:443–454. doi:10.1016/S1074-5521(02)00124-2

    Article  CAS  Google Scholar 

  64. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S et al (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiol 15:31–41. doi:10.1093/glycob/cwh143

    Article  CAS  Google Scholar 

  65. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S et al (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods 2:851–856. doi:10.1038/nmeth803

    Article  CAS  Google Scholar 

  66. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–989. doi:10.1002/cbic.200400403

    Article  CAS  Google Scholar 

  67. Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983. doi:10.1021/ja0505550

    Article  CAS  Google Scholar 

  68. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21. doi:10.1007/s00604-005-0393-9

    Article  CAS  Google Scholar 

  69. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461. doi:10.1021/cr068105t

    Article  CAS  Google Scholar 

  70. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiol 14:53R–62R. doi:10.1093/glycob/cwh122

    Article  CAS  Google Scholar 

  71. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674. doi:10.1021/cr940413g

    Article  CAS  Google Scholar 

  72. Bučko M, Mislovičová D, Nahálka J, Vikartovská A, Šefčovičová J, Katrlík J, Tkáč J, Gemeiner P, Lacík I, Štefuca V, Polakovič M, Rosenberg M, Rebroš M, Šmogrovičová D, Švitel J (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Papers 66:983–998. doi:10.2478/s11696-012-0226-3

    Article  CAS  Google Scholar 

  73. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131. doi:10.1016/S0956-5663(01)00115-4

    Article  Google Scholar 

  74. Labuda J, Oliveira Brett AM, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical Report). Pure Appl Chem 82:1161–1187. doi:10.1351/PAC-REP-09-08-1

    Article  CAS  Google Scholar 

  75. Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104:5987–6015. doi:10.1021/cr0300284

    Article  CAS  Google Scholar 

  76. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270. doi:10.1007/s00604-011-0758-1

    Google Scholar 

  77. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanal 15:913–947. doi:10.1002/elan.200390114

    Article  CAS  Google Scholar 

  78. Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51:6217–6229. doi:10.1016/j.electacta.2006.04.025

    Article  CAS  Google Scholar 

  79. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanal 19:1239–1257. doi:10.1002/elan.200603855

    Article  CAS  Google Scholar 

  80. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567. doi:10.1007/s00216-008-1970-7

    Article  CAS  Google Scholar 

  81. Sánchez-Pomales G, Zangmeister RA (2011) Recent advances in electrochemical glycobiosensing. Int J Electrochem 2011:Article ID 825790, 11 pages. doi:10.4061/2011/825790

  82. Zeng X, Andrade CAS, Oliveira MDL, Sun X-L (2012) Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 402:3161–3176. doi:10.1007/s00216-011-5594-y

    Article  CAS  Google Scholar 

  83. Dai Z, Kawde A-N, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J (2006) Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc 128:10018–10019. doi:10.1021/ja063565p

    Article  CAS  Google Scholar 

  84. La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free impedimetric detection of glycan-lectin interactions. Anal Chem 79:6959–6964. doi:10.1021/ac070651e

    Article  CAS  Google Scholar 

  85. Oliveira MDL, Correia MTS, Coelho LCBB, Diniz FB (2008) Electrochemical evaluation of lectin-sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf B: Biointerf 66:13–19. doi:10.1016/j.colsurfb.2008.05.002

    Article  CAS  Google Scholar 

  86. Oliveira MDL, Correia MTS, Diniz FB (2009) A novel approach to classify serum glycoproteins from patients infected by dengue using electrochemical impedance spectroscopy analysis. Synth Met 159:2162–2164. doi:10.1016/j.synthmet.2009.09.022

    Article  CAS  Google Scholar 

  87. Oliveira MDL, Correia MTS, Diniz FB (2009) Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor. Biosens Bioelectron 25:728–732. doi:10.1016/j.bios.2009.08.009

    Article  CAS  Google Scholar 

  88. Oliveira MDL, Nogueira ML, Correia MTS, Coelho LCBB, Andrade CAS (2011) Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens Actuat B: Chem 155:789–795. doi:10.1016/j.snb.2011.01.049

    Article  CAS  Google Scholar 

  89. Andrade CAS, Oliveira MDL, de Melo CP, Coelho LCBB, Correia MTS, Nogueira ML, Singh PR, Zeng X (2011) Diagnosis of dengue infection using a modified gold electrode with hybrid organic–inorganic nanocomposite and Bauhinia monandra lectin. J Colloid Interf Sci 362:517–523. doi:10.1016/j.jcis.2011.07.013

    Article  CAS  Google Scholar 

  90. Oliveira MDL, Andrade CAS, Correia MTS, Coelho LCBB, Singh PR, Zeng X (2011) Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interf Sci 362:194–201. doi:10.1016/j.jcis.2011.06.042

    Article  CAS  Google Scholar 

  91. Nagaraj VJ, Aithal S, Eaton S, Bothara M, Wiktor P, Prasad S (2010) NanoMonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine 5:369–378. doi:10.2217/nnm.10.11

    Article  CAS  Google Scholar 

  92. Bertók T, Gemeiner P, Mikula M, Gemeiner P, Tkac J (2012) An ultrasensitive electrochemical label-free detection of a glycoprotein by a lectin-based biosensor device, submitted

  93. Szunerits S, Niedziǒlka-Jönsson J, Boukherroub R, Woisel P, Baumann J-S, Siriwardena A (2010) Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces. Anal Chem 82:8203–8210. doi:10.1021/ac1016387

    Article  CAS  Google Scholar 

  94. Loaiza OA, Lamas-Ardisana PJ, Jubete E, Ochoteco E, Loinaz I, Cabañero G, García I, Penadés S (2011) Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal Chem 83:2987–2995. doi:10.1021/ac103108m

    Article  CAS  Google Scholar 

  95. Feizi T, Chai W (2004) Oligosaccharide microarrays to decipher the glyco code. Nat Rev Mol Cell Biol 5:582–588. doi:10.1038/nrm1428

    Article  CAS  Google Scholar 

  96. Feizi T, Fazio F, Chai W, Wong CH (2003) Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr Opin Struct Biol 13:637–645. doi:10.1016/j.sbi.2003.09.002

    Article  CAS  Google Scholar 

  97. Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248. doi:10.1038/nchembio785

    Article  CAS  Google Scholar 

  98. Culf AS, Cuperlovic-Culf M, Ouellette RJ (2006) Carbohydrate microarrays: survey of fabrication techniques. OMICS 10:289–310. doi:10.1089/omi.2006.10.289

    Article  CAS  Google Scholar 

  99. Ratner DM, Adams EW, Su J, O’Keefe BR, Mrksich M, Seeberger PH (2004) Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. Chem Bio Chem 5:379–382. doi:10.1002/cbic.200300804

    CAS  Google Scholar 

  100. Jadhav SA (2011) Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Central Eur J Chem 9:369–378. doi:10.2478/s11532-011-0024-8

    Article  CAS  Google Scholar 

  101. Ding L, Cheng W, Wang X, Ding S, Ju H (2008) Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J Am Chem Soc 130:7224–7225. doi:10.1021/ja801468b

    Article  CAS  Google Scholar 

  102. Ding L, Ji Q, Qian R, Cheng W, Huangxian J (2010) Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal Chem 82:1292–1298. doi:10.1021/ac902285q

    Article  CAS  Google Scholar 

  103. Cheng W, Ding L, Lei J, Ding S, Ju H (2008) Effective cell capture with tetrapeptide-functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem 80:3867–3872. doi:10.1021/ac800199t

    Article  CAS  Google Scholar 

  104. Xue Y, Ding L, Lei J, Yan F, Ju H (2010) In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells. Anal Chem 82:7112–7118. doi:10.1021/ac101688p

    Article  CAS  Google Scholar 

  105. Ding L, Qian R, Xue Y, Cheng W, Ju H (2010) In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement. Anal Chem 82:5804–5809. doi:10.1021/ac100866e

    Article  CAS  Google Scholar 

  106. Ertl P, Mikkelsen SR (2001) Electrochemical biosensor array for the identification of microorganisms based on lectin—lipopolysaccharide recognition. Anal Chem 73:4241–4248. doi:10.1021/ac010324l

    Article  CAS  Google Scholar 

  107. Ertl P, Wagner M, Corton E, Mikkelsen SR (2003) Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosens Bioelectron 18:907–916. doi:10.1016/S0956-5663(02)00206-3

    Article  CAS  Google Scholar 

  108. Heiskanen A, Yakovleva J, Spégel C, Taboryski R, Koudelka-Hep M, Emnéus J, Ruzgas T (2004) Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem Commun 6:219–224. doi:10.1016/j.elecom.2003.12.003

    Article  CAS  Google Scholar 

  109. Ding L, Cheng W, Wang X, Xue Y, Lei J, Yin Y, Ju H (2009) A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells. Chem Commun 46:7161–7163. doi:10.1039/b918008g

    Article  CAS  Google Scholar 

  110. Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H (2011) Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem 410:92–97. doi:10.1016/j.ab.2010.11.019

    Article  CAS  Google Scholar 

  111. Wan Y, Zhang D, Hou B (2009) Monitoring microbial populations of sulfate-reducing bacteria using an impedimetric immunosensor based on agglutination assay. Talanta 80:218–223. doi:10.1016/j.talanta.2009.06.057

    Article  CAS  Google Scholar 

  112. Gamella M, Campuzano S, Parrado C, Reviejo AJ, Pingarrón JM (2009) Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta 78:1303–1309. doi:10.1016/j.talanta.2009.01.059

    Article  CAS  Google Scholar 

  113. Xi F, Gao J, Wang J, Wang Z (2011) Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. J Electroanal Chem 656:252–257. doi:10.1016/j.jelechem.2010.10.025

    Article  CAS  Google Scholar 

  114. Zhang X, Teng Y, Fu Y, Xu L, Zhang S, He B, Wang C, Zhang W (2010) Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Anal Chem 82:9455–9460. doi:10.1021/ac102132p

    Article  CAS  Google Scholar 

  115. Ding C, Qian S, Wang Z, Qu B (2011) Electrochemical cytosensor based on gold nanoparticles for the determination of carbohydrate on cell surface. Anal Biochem 414:84–87. doi:10.1016/j.ab.2011.03.007

    Article  CAS  Google Scholar 

  116. Zhang J-J, Cheng F-F, Zheng T-T, Zhu J-J (2010) Design and implementation of electrochemical cytosensor for evaluation of cell surface carbohydrate and glycoprotein. Anal Chem 82:3547–3555. doi:10.1021/ac9026127

    Article  CAS  Google Scholar 

  117. Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanal 13:173–180. doi:10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B

    Article  CAS  Google Scholar 

  118. Tkac J, Davis JJ (2009) Label-free field effect protein sensing. In Davis JJ (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. Royal Society of Chemistry, Cambridge, pp 193-224. doi:10.1039/9781847559777-00193

  119. Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Kluwer Academic/Plenum Publishers, New York, pp 143–248

    Google Scholar 

  120. Dijksma M, Kamp B, Hoogvliet JC, van Bennekom WP (2001) Development of an electrochemical immunosensor for direct detection of interferon-γ at the attomolar level. Anal Chem 73:901–907. doi:10.1021/ac001051h

    Article  CAS  Google Scholar 

  121. Vedala H, Chen Y, Cecioni S, Imberty A, Vidal S, Star A (2011) Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett 11:170–175. doi:10.1021/nl103286k

    Article  CAS  Google Scholar 

  122. Mislovičová D, Gemeiner P, Kozarova A, Kožár T (2009) Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics Biologia 64:1–19. doi:10.2478/s11756-009-0029-3

    Google Scholar 

  123. Kaku H, Peumans WJ, Goldstein IJ (2010) Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L) bark. Arch Biochem Biophys 277:255–262. doi:10.1016/0003-9861(90)90576-K

    Article  Google Scholar 

  124. Rahaie M, Kazemi SS (2010) Lectin-based biosensors: as powerful tools in bioanalytical applications. Biotechnol 9:428–443. doi:10.3923/biotech.2010.428.443

    Article  CAS  Google Scholar 

  125. Bertók T, Šefčovičová J, Gemeiner P, Tkáč J (2012) Lectinomics: a tool in clinical diagnostics. Chem Listy 106:20–26

    Google Scholar 

  126. http://www.pdb.org

  127. http://www.sigmaaldrich.com

Download references

Acknowledgement

The financial support from Slovak scientific grant agency VEGA 2/0127/10 and from the Slovak research and development agency APVV 0282-11 is acknowledged. This contribution/publication was the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions—stage II, supported by the Research and Development Operational Program funded by the ERDF. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 311532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertók, T., Katrlík, J., Gemeiner, P. et al. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta 180, 1–13 (2013). https://doi.org/10.1007/s00604-012-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0876-4

Keywords

Navigation