Skip to main content
Log in

Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Geobacillus thermoleovorans subsp stromboliensis, was immobilized on an Amberlite XAD-4 ion exchanger and used as a solid phase extractant for the preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry. Parameters affecting the preconcentration (such as the pH value of the sample solution, the concentration of U(VI), the volume and type of eluent, the flow rate and the effect of potentially interfering ions) were studied. The optimum pH for the sorption of U(VI) was found to be pH 5.0. 5.0 mL of 1 M hydrochloric acid were used to eluate the U(VI) from the column. The loading capacity is 11 mg g−1. The limits of detection and quantification are 2.7 and 9.0 μg L−1, respectively, and relative standard deviations are <10 %. The method was applied to the determination of U(VI) in a certified reference sample (NCS ZC-73014; tea leaves) and in natural water samples.

Schematic presentation of SPE procedure using Geobacillus thermoleovorans subsp stromboliensis immobilized on an Amberlite XAD-4 as ion exchanger for preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224:293–306

    Article  CAS  Google Scholar 

  2. Nakajima A, Tsuruta T (2004) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 260:13–18

    Article  CAS  Google Scholar 

  3. Chang JS, Huang JC (1998) Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol Progr 14:735–741

    Article  CAS  Google Scholar 

  4. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  Google Scholar 

  5. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973

    CAS  Google Scholar 

  6. Groudev SN, Georgiev PS, Spasova II, Komnitsas K (2001) Bioremediation of a soil contaminated with radioactive elements. Hydrometallurgy 59:311–318

    Article  CAS  Google Scholar 

  7. Chen CX, Chen TL, Shi YJ, Wu XW, Chen XY (2008) Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf B 61:170–175

    Article  CAS  Google Scholar 

  8. Spear JR, Figueroa LA, Honeyman BD (2000) Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria. Appl Environ Microbiol 66:3711–3721

    Article  CAS  Google Scholar 

  9. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  Google Scholar 

  10. Wang JS, Hu XJ, Wang J, Bao ZL, Xie SB, Yang JH (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption behaviour of U(VI) onto R. arrihizus. Biochem Eng J 51:19–23

    Article  Google Scholar 

  11. Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24:129–136

    CAS  Google Scholar 

  12. Bag H, Lale M, Turker AR (1999) Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 47:689–696

    Article  Google Scholar 

  13. Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ, Reeds G (eds) Biotechnology, volume 6b. VCH, Weinheim, pp 425–427

    Google Scholar 

  14. Ozdemir G, Ceyhan N, Manav E (2005) Utilization in alginate beads for Cu(II) and Ni(II) adsorption of an exopolysaccharide produced by Chryseomonas luteola TEM05. J Microbiol Biotechnol 21:163–167

    Article  CAS  Google Scholar 

  15. Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–16

    Article  CAS  Google Scholar 

  16. Bag H, Turker AR, Lale M (2000) Talanta determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry after preconcentration by Escherichia coli immobilized on sepiolite. 51:1035–1043.

  17. Yalcınkaya Y, Arıca MY, Soysal L, Denizli A, Genc O, Bektas S (2002) Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem 26:441–452

    Google Scholar 

  18. Romano I, Poli A, Lama L, Gambacorta A, Nicolaus B (2005) Geobacillus thermoleovorans subsp. stromboliensis subsp. nov., isolated from the geothermal volcanic environment. J Gen Appl Microbiol 51:183–189

    Article  CAS  Google Scholar 

  19. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  20. Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells. J Hazard Mater 182:672–680

    Article  CAS  Google Scholar 

  21. Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem Engin J 151:255–261

    Article  CAS  Google Scholar 

  22. Sarı A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164:1004–1011

    Article  Google Scholar 

  23. Sassi M, Hadj B, Said A, Benderdouche N, Guibal E (2010) Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination 262:243–250

    Article  CAS  Google Scholar 

  24. Ozdemir S, Kilinc E, Poli A, Nicolaus B, Guven K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: Equilibrium, kinetic and thermodynamic studies. Chem Engin J 152:195–206

    Article  Google Scholar 

  25. Ghaedi M, Ahmadi F, Soylak M (2007) Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples. J Hazard Mater 147:226–231

    Article  CAS  Google Scholar 

  26. Suharso S, Buhani B, Sumadi S (2010) Immobilization of S. duplicatum supported silica gel matrix and its application on adsorption–desorption of Cu (II), Cd (II) and Pb (II) ions. Desalination 263:64–69

    Article  CAS  Google Scholar 

  27. Ozdemir S, Erdogan S, Kilinc E (2010) Bacillus sp. immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of thorium prior to UV-vis spectrometry determination. Microchim Acta 171:275–281

    Article  CAS  Google Scholar 

  28. Dogru M, Gul-Guven R, Erdogan S (2007) The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. J Hazard Mater 149:166–173

    Article  CAS  Google Scholar 

  29. Bag H, Lale M, Turker AR (1998) Determination of iron and nickel by flame atomic absorption spectrophotometry after preconcentration on Saccharomyces cerevisiae immobilized sepiolite. Talanta 7:689–696

    Article  Google Scholar 

  30. IUPAC (1978) Analytical chemistry division. Spectrochim Acta 33:242–245

    Google Scholar 

  31. Ozdemir S, Gul-Guven R, Kilinc E, Dogru M, Erdogan S (2010) Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp. stromboliensis immobilized on Amberlite XAD-4. Microchim Acta 169:79–85

    Article  CAS  Google Scholar 

  32. Behpour M, Ghoreishi SM, Nikkhah Qamsari Z, Samiei M, Soltani N (2010) Solid phase extraction of uranium by naphthalene-methyltrioctylammonium chloride and arsenazo (III) adsorbent and subsequent spectrophotometric determination. Chin J Chem 28:1457–1462

    Article  CAS  Google Scholar 

  33. Aydin FA, Soylak M (2007) Solid phase extraction and preconcentration of uranium (VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination. Talanta 72:187–192

    Article  CAS  Google Scholar 

  34. Cyriac B, Balaji BK (2010) A novel method of synthesizing solid phase adsorbent silica modified with xylenol orange: application for separation, pre-concentration and determination of uranium in calcium rich hydro-geochemical samples and sea water—Part 1. Microchim Acta 171:33–40

    Article  CAS  Google Scholar 

  35. Kazeraninejad M, Haji Shabani AM, Dadfarnia S, Ahmadi SH (2011) Solid phase extraction of trace amounts of uranium (VI) from water samples using 8-hydroxyquinoline immobilized on surfactant coated alumina. J Anal Chem 66:11–15

    Article  CAS  Google Scholar 

  36. Amin AS (2012) Solid-phase extraction using polymer-based cartridge modified with 2-(2-benzothiazolylazo)-3-hydroxyphenol for preconcentration of uranium(VI) ions from water and real samples. Spectrosc Lett 45:246–255

    Article  CAS  Google Scholar 

  37. Sadeghi S, Sheikhzadeh E (2008) Solid phase extraction using silica gel functionalized with Sulfasalazine for preconcentration of uranium (VI) ions from water samples. Microchim Acta 163:313–320

    Article  CAS  Google Scholar 

  38. Gladis JM, Rao TP (2002) Solid phase-extractive preconcentration of uranium on to 5,7-dichloroquinoline-8-ol modified napthalene. Anal Lett 35:501–515

    Article  CAS  Google Scholar 

  39. Liu Y, Cao X, Le Z, Luo M, Xub W, Huang G (2010) Pre-concentration and determination of trace uranium (VI) in environments using ion-imprinted chitosan resin via solid phase extraction. J Braz Chem Soc 21:533–540

    Article  CAS  Google Scholar 

  40. Yaman M, İnce M, Erel E, Cengiz E, Bal T, Er Ç, Kilicel F (2011) Distribution study of U, V, Mo, and Zr in different sites of lakes Van and Hazar, river and seawater samples by ICP-MS. Clean-Soil Air Water 39:530–536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barbara Nicolaus and Annarita Poli for supplying bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadin Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdemir, S., Kilinc, E. Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination. Microchim Acta 178, 389–397 (2012). https://doi.org/10.1007/s00604-012-0841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0841-2

Keyword

Navigation