Skip to main content
Log in

Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for simultaneous determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis. By adjusting a pH value of 4.2 in the aspartate background electrolyte, and by applying separation mechanisms via the ionic strength effect (bis-tris propane) and association equilibria (N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), a complete resolution of analytes from other co-migrating constituents is accomplished. In addition, isotachophoretic preconcentration of nitrate was implemented directly on the microchip. The ions were detected via conductivity measurements after injecting 900-nL samples. The limits of detection range from 40 to 120 μg L-1. The method displays a high reproducibility of the migration velocities under suppressed hydrodynamic and electroosmotic flow and therefore allows for a precise quantitation of analytes. The total analysis time is <450 s, and the working range is up to 60 mg L-1 for chloride and sulfate, and of up to 20 mg L-1 for nitrate. Filtration and degassing are the only sample treatment steps prior to analysis. The use of an internal standard enabled an easy chip-to-chip transfer of the method.

Determination of Chloride, Sulfate and Nitrate in Water by Microchip Electrophoresis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jandik P, Bonn G (1993) Capillary electrophoresis of small molecules and ions. Weinheim, VCH, p 1474

    Google Scholar 

  2. Kaniansky D, Masár M, Marák J, Bodor R (1999) Capillary electrophoresis of inorganic anions. J Chromatogr A 834:133–178

    Article  CAS  Google Scholar 

  3. Johns C, Breadmore MC, Macka M, Ryvolova M, Haddad PR (2009) Recent significant developments in detection and method development for the determination of inorganic ions by CE. Electrophoresis 30:53–67

    Article  Google Scholar 

  4. Li J, Lu W, Ma J, Chen L (2011) Determination of mercury(II) in water samples using dispersive liquid-liquid microextraction and back extraction along with capillary zone electrophoresis. Microchim Acta 175:301–308

    Article  CAS  Google Scholar 

  5. Lucy CA (1999) Factors affecting selectivity of inorganic anions in capillary electrophoresis. J Chromatogr A 850:319–337

    Article  CAS  Google Scholar 

  6. Jandik P, Jones WR (1991) Optimization of detection sensitivity in the capillary electrophoresis of inorganic anions. J Chromatogr 546:431–443

    Article  CAS  Google Scholar 

  7. Bodor R, Madajová V, Kaniansky D, Masár M, Jöhnck M, Stanislawski B (2001) Isotachophoresis and isotachophoresis - zone electrophoresis separations of inorganic anions present in water samples on a planar chip with column-coupling separation channels and conductivity detection. J Chromatogr A 916:155–165

    Article  CAS  Google Scholar 

  8. Kaniansky D, Zelenský I, Hybenová A, Onuska FI (1994) Determination of chloride, nitrate, sulfate, nitrite, fluoride, and phosphate by on line coupled capillary isotachophoresis-capillary zone electrophoresis with conductivity detection. Anal Chem 66:4258–4264

    Article  CAS  Google Scholar 

  9. Kaniansky D, Zelenská V, Baluchová D (1996) Capillary zone electrophoresis of inorganic anions with conductivity detection. Electrophoresis 17:1890–1897

    Article  CAS  Google Scholar 

  10. Masár M, Bodor R, Kaniansky D (1999) Separations of inorganic anions based on their complexations with alpha-cyclodextrin by capillary zone electrophoresis with contactless conductivity detection. J Chromatogr A 834:179–188

    Article  Google Scholar 

  11. Zelenský I, Zelenská V, Kaniansky D, Havaši P, Lednárová V (1984) Determination of inorganic anions in river water by column-coupling capillary isotachophoresis. J Chromatogr 294:317–327

    Article  Google Scholar 

  12. Noblitt SD, Schwandner FM, Hering SV, Collett JL, Henry CS (2009) High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection. J Chromatogr A 1216:1503–1510

    Article  CAS  Google Scholar 

  13. Tazaki M, Takagi M, Ueno K (1982) Use of uncharged neutral ligands in the isotachophoretic analysis of alkali and alkaline earth metals. Chem Lett 5:639–640

    Article  Google Scholar 

  14. Masár M, Poliaková K, Danková M, Kaniansky D, Stanislawski B (2005) Determination of organic acids in wine by zone electrophoresis on a chip with conductivity detection. J Sep Sci 28:905–914

    Article  Google Scholar 

  15. Woodland MA, Lucy CA (2001) Altering the selectivity of inorganic anion separations using electrostatic capillary electrophoresis. Analyst 126:28–32

    Article  CAS  Google Scholar 

  16. Gertsch JC, Noblitt SD, Cropek DM, Henry CS (2010) Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis. Anal Chem 82:3426–3429

    Article  CAS  Google Scholar 

  17. Kaniansky D, Masár M, Bodor R, Žúborová M, Ölvecká E, Jöhnck M, Stanislawski B (2003) Electrophoretic separations on chips with hydrodynamically closed separation systems. Electrophoresis 24:2208–2227

    Article  CAS  Google Scholar 

  18. Evenhuis CJ, Guijt RM, Macka M, Haddad PR (2004) Determination of inorganic ions using microfluidic devices. Electrophoresis 25:3602–3624

    Article  CAS  Google Scholar 

  19. Guijt RM, Evenhuis CJ, Macka M, Haddad PR (2004) Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis 25:4032–4057

    Article  CAS  Google Scholar 

  20. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  21. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  22. Crevullén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74:342–357

    Article  Google Scholar 

  23. Wu D, Qin J, Lin B (2008) Electrophoretic separation on microfluidic chips. J Chromatogr A 1184:542–559

    Article  CAS  Google Scholar 

  24. Bodor R, Kaniansky D, Masár M, Silleová K, Stanislawski B (2002) Determination of bromate in drinking water by zone electrophoresis-isotachophoresis on a column-coupling chip with conductivity detection. Electrophoresis 23:3630–3637

    Article  CAS  Google Scholar 

  25. Prest JE, Beardah MS, Baldock SJ, Doyle SP, Fielden PR, Goddard NJ, Brown BJ (2008) Determination of chlorine containing species in explosive residues using chip-based isotachophoresis. J Chromatogr A 1195:157–163

    Article  CAS  Google Scholar 

  26. Masár M, Sydes D, Luc M, Kaniansky D, Kuss HM (2009) Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip. J Chromatogr A 1216:6252–6255

    Article  Google Scholar 

  27. Luc M, Kruk P, Masár M (2011) Determination of ammonium in wastewaters by capillary electrophoresis on a column-coupling chip with conductivity detection. J Sep Sci 34:1561–1567

    Article  CAS  Google Scholar 

  28. Kaniansky D, Masár M, Bielčíková J, Iványi F, Eisenbeiss F, Stanislawski B, Grass B, Neyer A, Jöhnck M (2000) Capillary electrophoresis separations on a planar chip with the column-coupling configuration of the separation channels. Anal Chem 72:3596–3640

    Article  CAS  Google Scholar 

  29. Matysik FM (2008) Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Microchim Acta 160:1–14

    Article  CAS  Google Scholar 

  30. Liu Y, MacDonald DA, Yu XY, Hering SV, Collett JL Jr, Henry CS (2006) Analysis of anions in ambient aerosols by microchip capillary electrophoresis. Analyst 131:1226–1231

    Article  CAS  Google Scholar 

  31. Vrouwe EX, Luttge R, Olthuis W, Van den Berg A (2006) Rapid inorganic ion analysis using quantitative microchip capillary electrophoresis. J Chromatogr A 1102:287–293

    Article  CAS  Google Scholar 

  32. Ding Y, Rogers K (2010) Determination of haloacetic acids in water using solid-phase extraction/microchip capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 31:2602–2607

    Article  CAS  Google Scholar 

  33. Mahabadi KA, Rodriguez I, Lim CY, Maurya DK, Hauser PC, De Rooij NF (2010) Capacitively coupled contactless conductivity detection with dual top-bottom cell configuration for microchip electrophoresis. Electrophoresis 31:1063–1070

    CAS  Google Scholar 

  34. Wang W, Zhou F, Wu W (2009) A micro-electrophoresis system based on a short capillary with hydrostatic pressure assisted separation and injection. Microchim Acta 166:35–39

    Article  CAS  Google Scholar 

  35. Grass B, Neyer A, Jöhnck M, Siepe D, Eisenbeiss F, Weber G, Hergenröder R (2001) A new PMMA-microchip device for isotachophoresis with integrated conductivity detector. Sensor Actuator B-Chem 72:249–258

    Article  Google Scholar 

  36. Kaniansky D, Masár M, Bielčíková J (1997) Electroosmotic flow suppressing additives for capillary zone electrophoresis in a hydrodynamically closed separation system. J Chromatogr A 792:483–492

    Article  CAS  Google Scholar 

  37. Foret F, Křivanková L, Boček P (1993) Capillary zone electrophoresis. VCH Verlag, Weinheim, p 100

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Slovak Grant Agency for Science (the project VEGA 1/0672/09), Slovak Research and Development Agency (the project VVCE 0070/07) and Comenius University (projects No. UK/37/2011 and UK/47/2011. Dedicated to the memory of Professor Dušan Kaniansky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Masár.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masár, M., Bomastyk, B., Bodor, R. et al. Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis. Microchim Acta 177, 309–316 (2012). https://doi.org/10.1007/s00604-012-0788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0788-3

Keywords

Navigation