Skip to main content
Log in

Preparation and electrochemical properties of nano-sized cryptomelane particles for the formation of potentiometric potassium ion sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The potentiometric response of 100-nm spherical K1.3Mn8O16 particles versus K+ ions has been studied in aqueous media using a polymeric technology. The stoichiometry of this material evolves in potassium nitrate solution towards K1.08Mn8O16. A stable and reversible response has been obtained with a sensitivity of 47 mV dec−1 in the range from 8 × 10−5 to 1 mol·L−1, and a rather good selectivity towards Li+, Na+, Mg2+ and Ca2+ \(\left( {{\text{log K}}_{{{{\text{K}}^{\text{ + }} } \mathord{\left/ {\vphantom {{{\text{K}}^{\text{ + }} } {{\text{X}}^{n + } }}} \right. \kern-\nulldelimiterspace} {{\text{X}}^{n + } }}} \approx - {\text{3}}} \right)\). We assume that this potentiometric response is the result of the ability of K1.08Mn8O16 to specifically adsorb K+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schäfer AJ, Schindler JG (2001) Phase-transfer catalysis of transmitters and pharmaceuticals at K+-valinomycin- and NH4 +-nonactin-PVC-membranes of solid-state contact sensors. J Anal Chem 340:431

    Google Scholar 

  2. Lindner E, Toth K, Jeney J, Horvath M, Pungor E, Bitter I, Agai B, Töke L (1990) Novel bis (crown ether)-based potassium sensor for biological applications. Mikrochim Acta 100:157

    Google Scholar 

  3. Pandey PC, Singh G, Srivastava PK (2002) Electrochemical synthesis of tetraphenylborate doped polypyrrole and its applications in designing a novel zinc and potassium ion sensor. Electroanalysis 14:427

    Article  CAS  Google Scholar 

  4. Cheng Z, Luo L, Wu Z, Wang E, Yang X (2001) A new kind of potassium sensor based on capacitance measurement of mimic membrane. Electroanalysis 13:68

    Article  CAS  Google Scholar 

  5. Qin W, Zwickl T, Pretsch E (2000) Improved detection limits and unbiased selectivity coefficients obtained by using ion-exchange resins in the inner reference solution of ion-selective polymeric membrane electrodes. Anal Chem 72:3226

    Article  Google Scholar 

  6. Umezawa Y, Buhlmann P, Umezawa K, Tohda K, Amemiya S (2000) Potentiometric selectivity coefficients of ion-selective electrodes. Part I. inorganic cations (technical report). Pure Appl Chem 72:1851

    Article  CAS  Google Scholar 

  7. Tani Y, Umezawa Y (1998) Alkali metal ion-selective electrodes based on relevant alkali metal ion-doped manganese oxides. Mickrochim Acta 129:81

    Article  CAS  Google Scholar 

  8. Kanoh H, Feng Q, Miyai Y, Oai K (1993) Equilibrium potentials of spinel-type manganese oxide in aqueous solutions. J Electrochem Soc 140:3162

    Article  CAS  Google Scholar 

  9. James H, Carmack G, Freiser H (1972) Coaded wire ion selective electrodes. Anal Chem 44(4):856–857

    Article  CAS  Google Scholar 

  10. Le Poul N, Baudrin E, Morcrette M, Gwizdala S, Masquelier C, Tarascon JM (2003) Development of potentiometric ion sensors based on insertion materials as sensitive element. Solid State Ion 8877:1–10

    Google Scholar 

  11. Sauvage F, Tarascon J M, Baudrin E (2008) Insights on the potentiometric response vs. Li+ of LiFePO4 thin films in aqueous medium. Anal Chim Acta (in press)

  12. Sauvage F, Baudrin E, Tarascon JM (2007) Study of the potentiometric response towards sodium ions of Na0.44 − x MnO2 for the development of selective sodium ion sensors. Sens Actuators B Chem 120:638

    Article  Google Scholar 

  13. Sauvage F, Baudrin E, Tarascon JM (2005) Pulsed laser deposition and potentiometric response towards silver ions of β-AgCuPO4 thin films. Electrochim Acta 50:2507

    Article  CAS  Google Scholar 

  14. Sauvage F, Tarascon JM, Baudrin E (2008) Formation of junction-less grafted reference electrode for autonomic integrated ion-sensor devices. J Appl Electrochem (in press)

  15. Vicat J, Fanchon E, Strobel P, Qui DT (1986) The structure of potassium manganate (K1.33Mn8O16) and cation ordering in hollandite-type structures. Acta Crystallogr B 42:162

    Article  Google Scholar 

  16. Randall SR, Sherman DM, Ragnarsdottir KV (1998) An extended X-ray absorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chem Geol 151:95

    Article  CAS  Google Scholar 

  17. Jacobs DS, Kasten BL, Demott WR, Wolfson WL (1990) Laboratory test handbook, 2nd edn. Williams & Wilkins, Baltimore, p 302

    Google Scholar 

  18. Umezawa Y, Umezawa K, Sato H (1995) Selectivity coefficients for ion-selective electrodes: recommended methods for reporting \(K_{A,B}^{pot} \). Pure Appl Chem 67:507

    Article  Google Scholar 

  19. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751

    Article  Google Scholar 

  20. Tani Y, Umezawa Y (2003) Ion sensors based on ion-selective adsorption and desorption processes at inorganic materials/solution interfaces. Bunseki Kagaku 52:491

    Article  CAS  Google Scholar 

  21. Strobel P, Vicat J, Qui DT (1984) Thermal and physical properties of hollandite-type cryptomelanes K1.3Mn8O16 and (K,H3O) x Mn8O16. J Solid State Chem 55:67

    Article  CAS  Google Scholar 

  22. Hofmann-Perez M, Gerischer H (1961) Charge distribution on the surface of germanium electrodes in aqueous solutions of electrolytes. Z Elektrochem 65:771

    CAS  Google Scholar 

  23. Mlika M, Ouada HB, Ben Chaabane R, Gamoudi M, Guillaud G, Jaffrezic-Renault N, Lamartine R (1998) Calixarene membranes on semiconductor substrates for E.I.S. chemical sensors. Electrochim Acta 43:841

    Article  CAS  Google Scholar 

  24. Adamson AW (1990) Physical chemistry of surfaces, 5th edn. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgement

The authors thank Ghislain Binotto for his valuable technical help on the B.E.T. measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Baudrin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

XRD diffractogram of the precipitate recovered corresponding to the birnessite structure of formula K0.5 − x Mn2O4·1.5H2O (S.E.M. pictures of the precipitate in inset) (DOC 1.24 MB)

Fig. S2

N2 adsorption/desorption isotherm curve recorded at 77 K for the as-prepared K1.3Mn8O16 powder (DOC 110 KB)

Fig. S3

Equilibrium potential of a K1.08Mn8O16-based plastic composite electrode as a function of the logarithm of the cadmium ion activity (DOC 64.0 KB)

Fig. S4

Cyclic voltamperograms recorded at different scan rates (from 0.1 to 3 mV s−1) using a K1.08Mn8O16/C plastic composite electrode in an aqueous 1 mol l−1 KNO3 electrolyte (DOC 1.19 MB)

Fig. S5

a Dependence of pre-peak current as a function of scan rate. b Dependence of (I peak − I capacitif) as a function of square root scan rate (DOC 3.13 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauvage, F., Tarascon, JM. & Baudrin, E. Preparation and electrochemical properties of nano-sized cryptomelane particles for the formation of potentiometric potassium ion sensors. Microchim Acta 164, 363–369 (2009). https://doi.org/10.1007/s00604-008-0067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0067-5

Keywords

Navigation