Skip to main content
Log in

Coupled Modeling of Sedimentary Basin and Geomechanics: A Modified Drucker–Prager Cap Model to Describe Rock Compaction in Tectonic Context

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The aim of basin modeling is to characterise fluids and rocks in a basin considering its history and data partly describing its present state. In usual basin simulators, only a simplified description of geomechanics based on the hypothesis of oedometric strain is used. To both enhance the modeling of basin history and to characterise actual in situ stresses, the effect of stress redistribution, horizontal stresses, and strain variations during basin history should be considered. To address this point, a coupled basin-geomechanics framework based on a new constitutive law is proposed in this paper using the prototype simulator \(\mathrm{A}^{2}\). This framework has been built to provide relevant results for various kinds of basin cases including tectonic loading. A finite strain poromechanical approach is considered along with an modified Drucker–Prager Cap model to describe rock compaction under natural sedimentation, erosion, and tectonics. The constitutive model can be seen as a tensorial extension of the compaction models of Athy or Schneider as it allows to recover the same behaviour in oedometric context. Simple test cases are modeled considering typical sand or shale properties, emphasizing the effect of tectonic loading on the present-day pore pressures and in situ stresses. It appears that even relatively moderate tectonic loading (\(5\%\) of horizontal strain) can lead to overpressures of several hundreds of bars and to a complete change in in situ stress regime for deeply buried layers (above a depth of 2000 m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\sigma _\mathrm{eff}\) :

Basin modeling vertical effective stress

\(\sigma _\mathrm{v}\) :

Vertical total stress

p :

Pore pressure

\(\phi\) :

Eulerian porosity

\(\phi _{0}\) :

Initial porosity

\(\kappa\) :

Athy’s law compaction parameter

\(\phi _\mathrm{r}\) :

Residual porosity

\(\phi _\mathrm{a}\) :

Schneider’s law compaction parameter

\(\phi _\mathrm{b}\) :

Schneider’s law compaction parameter

\(\sigma _\mathrm{a}\) :

Schneider’s law compaction parameter

\(\sigma _\mathrm{b}\) :

Schneider’s law compaction parameter

\({\varvec{\sigma }}\) :

Total stress tensor

\(\rho _\mathrm{h}\) :

Homogeneized density

\({\varvec{g}}\) :

Gravity

\(\rho _\mathrm{f}\) :

Fluid density

\(\rho _\mathrm{s}\) :

Solid density

t :

Time

\(\varPhi\) :

Lagrangian porosity

J :

Jacobian of the geometrical transformation

\({\varvec{\eta }}\) :

The fluid flow

\({\varvec{k}}\) :

The permeability tensor

\({\varvec{\nabla }}\) :

Gradient operator

\(\varOmega _{0}\) :

Initial state

\(\varOmega _\mathrm{t}\) :

Current state

\(\varOmega _\mathrm{u}\) :

Unloaded state

\({\varvec{F^\mathrm{t}}}\) :

Transformation between the states \(\varOmega _{0}\) and \(\varOmega _\mathrm{t}\)

\({\varvec{F^\mathrm{p}}}\) :

Transformation between the states \(\varOmega _{0}\) and \(\varOmega _\mathrm{u}\)

\({\varvec{F^\mathrm{e}}}\) :

Transformation between the states \(\varOmega _\mathrm{u}\) and \(\varOmega _\mathrm{t}\)

\(\phi _\mathrm{p}\) :

Plastic Eulerian porosity

\(\phi _\mathrm{u}\) :

Eulerian porosity of the unloaded state

\(J^\mathrm{p}\) :

Determinant of the transformation \({\varvec{F^\mathrm{p}}}\)

\({\varvec{\sigma '}}\) :

Effective stress tensor

\(\sigma _{zz}'\) :

Vertical effective stress

b :

Biot coefficient

M :

Biot modulus

\({\varvec{\varOmega }}\) :

Spin rate tensor

\({\varvec{d_\mathrm{p}}}\) :

Plastic strain rate tensor

\({\varvec{d}}\) :

Total strain rate tensor

\(F_\mathrm{s}\) :

Yield surface associated with shear plasticity

\(G_\mathrm{s}\) :

Plastic potential associated with shear plasticity

\(F_\mathrm{c}\) :

Yield surface associated with plastic compaction

\(G_\mathrm{c}\) :

Plastic potential associated with plastic compaction

q :

Equivalent stress

\(p'\) :

Mean effective stress

\(\beta\) :

Internal friction angle

c :

Cohesion

\({\varvec{s}}\) :

Deviatoric stress tensor

\({\varvec{I}}\) :

Identity tensor of the second order

\(p'_\mathrm{l}\) :

Mean effective stress corresponding to the limit between shear and compaction plasticity

\(p'_\mathrm{c}\) :

Consolidation pressure

r :

Shape of the cap

\(\kappa '\) :

Compaction parameter of tensorial Athy’s law

\(p'_\mathrm{a}\) :

Compaction parameter of tensorial Schneider’s law

\(p'_\mathrm{b}\) :

Compaction parameter of tensorial Schneider’s law

\({{\mathcal {I}}}\) :

Identity tensor of the fourth order

K :

Bulk modulus

G :

Shear modulus

\(K_\mathrm{s}\) :

Grain bulk modulus

\(G_\mathrm{s}\) :

Grain shear modulus

\(K_{0}\) :

Initial bulk modulus

\(G_{0}\) :

Initial shear modulus

\(\xi\) :

Conversion parameter

\(\alpha\) :

Anisotropy coefficient of the permeability tensor

\(k_\mathrm{h}\) :

Horizontal permeability

\(k_\mathrm{v}\) :

Vertical permeability

\(s_{0}\) :

Specific surface

References

  • Adjukiewicz JM, Lander RH (2010) Sandstone reservoir quality prediction: the state of the art. AAPG Bull 94:1083–1091

    Article  Google Scholar 

  • Athy LF (1930) Density, porosity and compaction of sedimentary rocks. AAPG Bull 14:1–24

    Google Scholar 

  • Bernaud D, Deudé V, Dormieux L, Maghous S, Schmitt DP (2002) Evolution of elastic properties in finite poroplasticity and finite element analysis. Int J Numer Anal Methods Geomech 26:845–871

    Article  Google Scholar 

  • Bernaud D, Dormieux L, Maghous S (2006) A constitutive and numerical model for mechanical compaction in sedimentary basins. Comput Geotech 33:316–329

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Bourgeois E (1997) Mécanique des milieux poreux en transformation finie : formulation des problèmes et méthodes de résolution. Thèse de l’Ecole Nationale des Ponts et Chaussées

  • Breckels IM, van Eekelen HAM (1982) Relationship between horizontal stress and depth in sedimentary basins. J Pet Tech 34:2191–2199

    Article  Google Scholar 

  • Brüch A, Maghous S, Ribeiro FLB, Dormieux L (2018) A thermo-poro-mechanical constitutive and numerical model for deformation in sedimentary basins. J Pet Sci Eng 160:313–326

    Article  Google Scholar 

  • Carman PC (1939) Permability of saturated sands, soils and clays. J Agric Sci 93:7729–7740

    Google Scholar 

  • Code\_Aster (2017) EDF R&D. http://www.code-aster.org

  • Coussy O (1991) Mécanique des milieux, poreux. Edition Technip, Paris

  • Debernardi D, Barla G (2009) New viscoplastic model for design analysis of tunnels in squeezing conditions. Rock Mech Rock Eng 42:259–288

    Article  Google Scholar 

  • Deudé V, Dormieux L, Maghous S, Barthélémy JF, Bernaud D (2004) Compaction process in sedimentary basins: the role of stiffness increase and hardening induced by large strains. Int J Numer Anal Methods Geomech 28:1279–1303

    Article  Google Scholar 

  • DiMaggio FL, Sandler IS (1971) The effect of strain rate on the constitutive equation of rocks. Defense Nuclear Agency 2801T

  • Doyen PM (1988) Permability, conductivity, and pore geometry of sandstone. J Geophys Res 93:7729–7740

    Article  Google Scholar 

  • Faille I, Thibaut M, Cacas MC, Havé P, Willien F, Wolf S, Agelas L, Pegaz-Fiornet S (2014) Modeling fluid flow in faulted basins. Oil Gas Sci Tech 69:529–553

    Article  Google Scholar 

  • Garner S, Strong J, Zavaliangos A (2015) The extrapolation of the Drucker–Prager/Cap material parameters to low and high relative densities. Powder Technol 283:210–226

    Article  Google Scholar 

  • Giles MR (1991) Diagenesis : a quantitative perspective. In: Implications for basin modelling and rock property prediction. Kluwer, New York

  • Grueschow E, Rudnicki JW (2005) Elliptic yield cap constitutive modeling for hig porosity sandstone. Int J Sol Struct 42:4574–4587

    Article  Google Scholar 

  • Guilmin AL (2012) Contribution de la mécanique à l’étude des bassins sédimentaires : modélisation de la compaction chimique et simulation de la compaction mécanique avec prise en compte d’effets tectoniques. Thèse de l’Université Paris-Est

  • Guy N, Enchéry G, Renard G (2013) Numerical modeling of thermal EOR: comprehensive coupling of an AMR-based model of thermal fluid flow and geomechanics. Oil Gas Sci Tech 67:1019–1027

    Article  Google Scholar 

  • Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin

    Google Scholar 

  • Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50:485–505

    Google Scholar 

  • Hedberg HD (1936) Gravitational compaction of clays and shales. Am J Sci 31:241–287

    Article  Google Scholar 

  • Houseknecht DW (1984) Influence of grain size and temperature on intergranular pressure solution, quartz cementation, and porosity in a quartzose sandstone. J Sedim Pet 54:348–361

    Google Scholar 

  • Houseknecht DW (1988) Intragranular pressure solution in four quartzose sandstones. J Sedim Pet 58:228–246

    Google Scholar 

  • Kozeny J (1927) Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss 136:271–306

    Google Scholar 

  • Luo X, Vasseur G (2002) Natural hydraulic cracking: numerical model and sensitivity study. Earth Planet Sci Let 201:431–446

    Article  Google Scholar 

  • Luo X, Pouya A, Lamoureux-Var V, Poliakov A, Vasseur G (1998) Elastoplastic deformation of porous media applied to the modelling of the compaction at the basin scale. Mar Pet Geol 15:145–162

    Article  Google Scholar 

  • Ma J (2017) An elasto-viscoplastic model for soft porous rocks within the consistent framework. Rock Mech Rock Eng 50:3109–3114

    Article  Google Scholar 

  • Magara K (1991) Compaction and fluid migration: practical petroleum geology. Elsevier, Amsterdam

    Google Scholar 

  • Maghous S, Brüch A, Bernaud D, Dormieux L, Braun L (2013) Two-dimensional finite element analysis of gravitational and lateral driven deformation in sedimentary basins. Int J Anal Methods Geomech 38:725–746

    Article  Google Scholar 

  • Obradors-Prats J, Rouainia M, Aplin AC, Crook AJL (2017) Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach. Mar Pet Geol 79:31–43

    Article  Google Scholar 

  • Ouraga Z, Guy N, Pouya A (2017) Modeling of natural fracture initiation and propagation in basin sedimentation context. J Geophys Res Solid Earth 122:247–261

    Article  Google Scholar 

  • Ouraga Z, Guy N, Pouya A (2018) Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins. Geophys J Int 213:798–804

    Article  Google Scholar 

  • Perez-Gandarillas L, Mazor A, Lecoq O, Michrafy A (2017) Compaction properties of dry granulated powders based on Drucker–Prager Cap model. Powder Technol (in press)

  • Plumb RA (1994) Variations of the least horizontal stress magnitude in sedimentary rocks. In proceedings of \(1\)st North American rock mechanics symposium, 1–3 June 1994, Austin

  • Schneider F, Hay S (2001) Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid-Norvegian Continental Shelf. Mar Pet Geol 18:833–848

    Article  Google Scholar 

  • Schneider F, Potdevin JL, Wolf S, Faille I (1996) Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics 263:307–313

    Article  Google Scholar 

  • Secor D (1969) Mechanisms of natural extension fracturing at depth in the Earth’s crust. Geol Surv Can Pap 68:3–48

    Google Scholar 

  • Sibson R (2003) Brittle failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull 87:901–908

    Article  Google Scholar 

  • Smith JE (1971) The dynamics of shale compaction and evolution of pore fluid pressure. Math Geol 3:239–263

    Article  Google Scholar 

  • Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent displacements in a circular tunnel. Int J Rock Mech Min Sci 24:155–164

    Article  Google Scholar 

  • TemisFlow (2017) Beicip-Franlab. http://www.beicip.com

  • Terzaghi K (1923) Die berechnung der Duerchlassigkeitsziffer des Tones in Verlauf der hydrodynamischen Spannungserscheinungen. Szber Akad Wiss Vienna Math Naturwiss Klasse 132:125–138

    Google Scholar 

  • Wasantha PLP, Ranjith PG, Zhao J, Shao SS, Permata G (2015) Strain rate effect on the mechanical behaviour of sandstones with different grain sizes. Rock Mech Rock Eng 48:1883–1895

    Article  Google Scholar 

  • Woillez MN, Souque C, Rudkiewicz JL, Willien F, Cornu T (2017) Insights in fault flow behaviour from onshore Nigeria petroleum system modelling. Oil Gas Sci Tech 72:31–42

    Google Scholar 

  • Yang AY, Aplin AC (2010) A permeability–porosity relationship for mudstones. Mar Pet Geol 8:1692–1697

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the NOMBA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guy, N., Colombo, D., Frey, J. et al. Coupled Modeling of Sedimentary Basin and Geomechanics: A Modified Drucker–Prager Cap Model to Describe Rock Compaction in Tectonic Context. Rock Mech Rock Eng 52, 3627–3643 (2019). https://doi.org/10.1007/s00603-019-01783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01783-y

Keywords

Navigation