Skip to main content
Log in

An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Rock engineers often encounter materials with a large number of discontinuities that significantly influence rock stability. However, the strength and failure patterns of ubiquitous-joint rock specimens have not been examined comprehensively. In this study, the peak uniaxial compressive strength (UCSJ) and failure patterns of ubiquitous-joint rock-like specimens are investigated by combining similar material testing and numerical simulation using the two-dimensional particle flow code. The rock-like specimens are made of white cement, water, and sand. Flaws are created by inserting mica sheets into the fresh cement mortar paste. Under uniaxial compressional loading, the failure patterns of ubiquitous-joint specimens can be classified into four categories: stepped path failure, planar failure, shear-I failure, and shear-II failure. The failure pattern of the specimen depends on the joint-1 inclination angle α and the intersection angle γ between joint-1 and joint-2, while α strongly affects UCSJ. The UCSJ of specimens with γ = 15° or 30° shows similar tendencies for 0° ≤ α ≤ 75°. For specimens with γ = 45° or 60°, UCSJ increases for 0° ≤ α ≤ 30° and decreases for α > 30°. For specimens with γ = 75°, the UCSJ peaks when α = 0° and increases for 60° ≤ α ≤ 75°. The numerical and experimental results show good agreement for both the peak strength and failure patterns. These results can improve our understanding of the mechanical behavior of ubiquitous-joint rock mass and can be used to analyze the stability of rock slopes or other rock engineering cases such as tunneling construction in heavily jointed rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Bahaaddini M, Sharrock G, Hebblewhite BK (2013) Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech 49:206–225

    Article  Google Scholar 

  • Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998a) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998b) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92(3):221–252

    Article  Google Scholar 

  • Bombolakis EG (1968) Photoelastic study of initial stages of brittle fracture in compression. Tectonophysics 6(6):461–473

    Article  Google Scholar 

  • Cao P, Liu T, Pu C, Lin H (2015) Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol 187(17):113–121

    Article  Google Scholar 

  • Cao W, Li X, Tao M, Zhou Z (2016a) Vibrations induced by high initial stress release during underground excavations. Tunn Undergr Space Technol 53:78–95

    Article  Google Scholar 

  • Cao R, Cao P, Lin H, C Pu, K Ou (2016b) Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech Rock Eng 49(3):763–783

    Article  Google Scholar 

  • Cho N, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010. doi:10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  • Dyskin AV, Sahouryeh E, Jewell RJ (2003) Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression. Eng Fract Mech 70(15):2115–2136

    Article  Google Scholar 

  • Fan X, Kulatilake PHSW, Chen X (2015) Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach. Eng Geol 190(14):17–32

    Article  Google Scholar 

  • Ghazvinian A, Sarfarazi V, Schubert W (2012) A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech Rock Eng 45:677–693

    Article  Google Scholar 

  • Hoek E, Bieniawski ZT (1965) Brittle fracture propagation in rock under compression. Int J Fract 1(3):137–155

    Article  Google Scholar 

  • Huang H (1999) Discrete element modeling of tool-rock interaction. Ph.D. thesis, University of Minnesota, Minneapolis, MN

  • Itasca Consulting Group (2002) Users’ manual for particle flow code in 2 dimensions (PFC2D). Version 3.1. Minneapolis, Minnesota

  • Koyama T, Jing L (2007) Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng Anal Bound Elem 31(5):458–472. doi:10.1016/j.enganabound.2006.11.009

    Article  Google Scholar 

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48(6):979–999

    Article  Google Scholar 

  • Li YP, Chen LZ, Wang YH (2005) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42(9/10):2505–2516

    Article  Google Scholar 

  • Manouchehrian A, Marji MF (2012) Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mech Sin 28(5):1389–1397

    Article  Google Scholar 

  • Manouchehrian A, Sharifzadeh M, Marji MF, Gholamnejad J (2014) A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Arch Civ Mech Eng 14(1):40–52

    Article  Google Scholar 

  • Park NS (2001) Crack propagation and coalescence in rock under uniaxial compression. Master’s Thesis, Seoul National University

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46(5):819–829

    Article  Google Scholar 

  • Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77(14):2727–2748

    Article  Google Scholar 

  • Potyondy DO (2007) Simulating stress corrosion with a bonded-particle model for rock. Int J Rock Mech Min Sci 44(5):677–691

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Reyes O, Einstein HH (1991) Failure mechanisms of fractured rock—a fracture coalescence model. In: Proceedings of 7th congress of the ISRM, Aachen, Germany, pp 333–340

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39(2):229–241

    Article  Google Scholar 

  • Sahouryeh E, Dyskin AV, Germanovich LN (2002) Crack growth under biaxial compression. Eng Fract Mech 69(18):2187–2198

    Article  Google Scholar 

  • Shen B (1995) The mechanism of fracture coalescence in compression experimental study and numerical simulation. Eng Fract Mech 51(1):73–85

    Article  Google Scholar 

  • Tang CA, Lin P, Wong RHC, Chau KT (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. Int J Rock Mech Min Sci 38(7):925–939

    Article  Google Scholar 

  • Vallejo LE (1987) The influence of fissures in a stiff clay subjected to direct shear. Geotechnique 37(1):69–82

    Article  Google Scholar 

  • Vallejo LE (1988) The brittle and ductile behaviour of clay samples containing a crack under mixed-mode loading. Theor Appl Fract Mech J 10:3–78

    Article  Google Scholar 

  • Vallejo LE (1989) Fissure parameters in stiff clays under compression. J Geotech Eng ASCE 115(9):1303–1317

    Article  Google Scholar 

  • Vallejo LE, Shettima M, Alaasmi A (2013) Unconfined compressive strength of brittle material containing multiple cracks. Int J Geotech Eng 7(3):318–322

    Article  Google Scholar 

  • Vasarhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33:119–139

    Article  Google Scholar 

  • Vesga LF, Vallejo LE, Lobo-Guerrero S (2008) DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int J Numer Anal Meth Geomech 32(11):1405–1415

    Article  Google Scholar 

  • Wong NY (2008) Crack coalescence in molded gypsum and Carrara marble (Ph.D.) Massachusetts Institute of Technology

  • Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35(2):147–164

    Article  Google Scholar 

  • Wong LNY, Einstein HNY (2006) Fracturing behavior of prismatic specimens containing single flaws. In: Golden rocks 2006, the 41st US symposium on rock mechanics (USRMS)

  • Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42(3):475–511

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and Carrara marble: part 2. Microscopic observations and interpretation. Rock Mech Rock Eng 42(3):513–545

    Article  Google Scholar 

  • Wong LNY, Li HQ (2013) Numerical study on coalescence of two pre-existing coplanar flaws in rock. Int J Solids Struct 50(22–23):3685–3706

    Article  Google Scholar 

  • Wong LNY, Zhang X-P (2014) Size effects on cracking behavior of flaw-containing specimens under compressive loading. Rock Mech Rock Eng 47(5):1921–1930

    Article  Google Scholar 

  • Wong RHC, Chau KT, Tang CA, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach. Int J Rock Mech Min Sci 38(7):909–924

    Article  Google Scholar 

  • Xie Y, Cao P, Liu J, Dong L (2016) Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method. Comput Geotech 74:1–14

    Article  Google Scholar 

  • Yang SQ (2011) Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech 78:3059–3081. doi:10.1016/j.engfracmech.2011.09.002

    Article  Google Scholar 

  • Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput 23(6):607–631

    Article  Google Scholar 

  • Yang SQ, Yang DS, Jing HW, Li YH, Wang SY (2012) An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng 45(4):563–582

    Article  Google Scholar 

  • Yang S-Q, Liu X-R, Jing H-W (2013) Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Int J Rock Mech Min Sci 63:82–92

    Google Scholar 

  • Yang S-Q, Huang Y-H, Jing H-W, Liu X-R (2014) Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng Geol 178:28–48

    Article  Google Scholar 

  • Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889

    Article  Google Scholar 

  • Zhang X-P, Wong LNY (2013a) Crack initiation, propagation and coalescence in rocklike material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng 46:1001–1021

    Article  Google Scholar 

  • Zhang X-P, Wong LNY (2013b) Loading rate effects on cracking behavior of flaw contained specimens under uniaxial compression. Int J Fract 180:93–110. doi:10.1007/s10704-012-9803-2

    Article  Google Scholar 

  • Zhang K, Cao P, Ma G et al (2015a) Strength, fragmentation and fractal properties of mixed flaws. Acta Geotech. doi:10.1007/s11440-015-0403-y

    Google Scholar 

  • Zhang X-P, Liu Q, Wu S, Tang X (2015b) Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression. Eng Geol 199(2015):74–90

    Article  Google Scholar 

  • Zhou XP, Yang HQ (2007) Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock. Theor Appl Fract Mech 48:1–20. doi:10.1016/j.tafmec.2007.04.008

    Article  Google Scholar 

  • Zhou XP, Cheng H, Feng YF (2014) An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression. Rock Mech Rock Eng 47:1961–1986. doi:10.1007/s00603-013-0511-7

    Article  Google Scholar 

  • Zhou XP, Bi J, Qian QH (2015) Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech Rock Eng 48:1097–1114. doi:10.1007/s00603-014-0627-4

    Article  Google Scholar 

Download references

Acknowledgments

This paper gets its funding from Project (51304240, 51474249, 51404179, 51174228, 51274249) supported by National Natural Science Foundation of China; Project Supported by Innovation Driven Plan of Central South University (No. 2016CX019). Project supported by the Graduate student innovation project of Central south university (2015zzts074). Project supported by the Fundamental Research Funds for the Central Universities (310821161008) and the Opening fund of State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (SKLGP2016K009). The authors wish to acknowledge these supports. At the same time, authors are very grateful for the anonymous reviewers’ valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Rh., Cao, P., Fan, X. et al. An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock Mech Rock Eng 49, 4319–4338 (2016). https://doi.org/10.1007/s00603-016-1029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1029-6

Keywords

Navigation