Skip to main content
Log in

Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The drilling of galleries induces damage propagation in the surrounding medium and creates, around them, the excavation damaged zone (EDZ). The prediction of the extension and fracture structure of this zone remains a major issue, especially in the context of underground nuclear waste storage. Experimental studies on geomaterials indicate that localised deformation in shear band mode usually appears prior to fractures. Thus, the excavation damaged zone can be modelled by considering the development of shear strain localisation bands. In the classical finite element framework, strain localisation suffers a mesh-dependency problem. Therefore, an enhanced model with a regularisation method is required to correctly model the strain localisation behaviour. Among the existing methods, we choose the coupled local second gradient model. We extend it to unsaturated conditions and we include the solid grain compressibility. Furthermore, air ventilation inside underground galleries engenders a rock–atmosphere interaction that could influence the damaged zone. This interaction has to be investigated in order to predict the damaged zone behaviour. Finally, a hydro-mechanical modelling of a gallery excavation in claystone is presented and leads to a fairly good representation of the EDZ. The main objectives of this study are to model the fractures by considering shear strain localisation bands, and to investigate if an isotropic model accurately reproduces the in situ measurements. The numerical results provide information about the damaged zone extension, structure and behaviour that are in very good agreement with in situ measurements and observations. For instance, the strain localisation bands that develop in chevron pattern during the excavation and rock desaturation, due to air ventilation, are observed close to the gallery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(a^t\) :

Current configuration of quantity \(a\) at a given time \(t\)

\({\dot{a}}\) :

Time variation of quantity \(a\)

\({\rm da}\) :

Time variation of quantity \(a\) between two given times for iterative procedures

\(a^*\) :

Virtual quantity \(a\)

\(\alpha \) :

Deviatoric strain increment

\(\beta _{\rm c}\) :

Cohesion parameter for suction influence

\(\beta _{\rm E}\) :

Young’s modulus parameter for suction influence

\(\Gamma \) :

Porous material boundary

\(\Gamma _\sigma \) :

Part of the porous material boundary on which \(\overline{t}_i\) and \(\overline{T}_i\) are applied

\(\Gamma _q\) :

Part of the porous material boundary on which \(\bar{q}\) is prescribed

\(\delta _{ij}\) :

Kronecker symbol

\(\Delta _{{\rm R/S/W}}\) :

Non-equilibrium forces of balance equations for iterative procedures

\(\epsilon _{ij}\) :

Total strain field

\(\epsilon ^{\rm p}_{ij}\) :

Plastic strain field

\({\hat{\epsilon }}_{ij}\) :

Deviatoric total strain field

\({\hat{\epsilon }}^{\rm p}_{ij}\) :

Deviatoric plastic strain field

\(\epsilon _{\rm v}\) :

Volumetric strain

\(\epsilon _{\rm eq}\) :

Von Mises’ equivalent deviatoric total strain (total deviatoric strain)

\(\epsilon ^{\rm p}_{\rm eq}\) :

Von Mises’ equivalent deviatoric plastic strain

\(\theta \) :

Tangential direction

\(\lambda _{ij}\) :

Lagrange multipliers field

\(\mu _{\rm w}\) :

Water dynamic viscosity

\(\nu \) :

Drained Poisson’s ratio

\(\rho \) :

Density

\(\rho _{\rm s}\) :

Solid grain density

\(\rho _{\rm w}\) :

Water density

\(\sigma _{ij}\) :

Cauchy total stress field

\(\sigma' _{ij}\) :

Bishop’s effective stress field

\(\hat{\sigma }_{ij}\) :

Deviatoric stress field

\(\sigma'\) :

Bishop’s mean effective stress

\(\sigma _{x/y/z,0}\) :

Initial principal total stresses

\(\Sigma _{ijk}\) :

Double stress dual of the virtual micro second gradient field

\(\tilde{\Sigma }_{ijk}\) :

Jaumann double stress rate

\(\tau _{ij}\) :

Additional stress field associated to the microstructure (microstress)

\(\upsilon _{ij}\) :

Microkinematic gradient field

\(\phi _{\rm c}\) :

Compression friction angle

\(\phi _{{\rm c},0}\) :

Initial compression friction angle

\(\phi _{\rm c,f}\) :

Final compression friction angle

\(1/\chi _{\rm w}\) :

Water compressibility

\(\psi \) :

Dilatancy angle

\(\omega _{ij}\) :

Spin tensor

\(\Omega \) :

Porous material volume

\({\rm I}_\sigma \) :

First stress invariant

\({\rm II}_{\hat{\sigma }}\) :

Second deviatoric stress invariant

\(b\) :

Biot’s coefficient

\(B_{\phi }\) :

Friction angle hardening coefficient

\(B_{\rm c}\) :

Cohesion softening coefficient

\(c\) :

Cohesion

\(c_0\) :

Initial saturated cohesion

\(c_{\rm f}\) :

Final saturated cohesion

\(c_{\rm sat}\) :

Saturated cohesion

\(D\) :

Second gradient elastic modulus

\(Du_i\) :

Normal derivative of the displacement field

\(E\) :

Drained Young’s modulus

\(E_{\rm sat}\) :

Saturated Young’s modulus

\(F_{ij}\) :

Macrodeformation gradient field

\(h_{ijk}\) :

Micro second gradient field

\(K\) :

Drained bulk modulus of the poroelastic material

\(k_{ij}\) :

Intrinsic water permeability tensor

\(k_{\rm r,w}\) :

Relative water permeability

\(K_{\rm s}\) :

Isotropic bulk modulus of the solid grains

\(m\) :

Yield surface parameter

\(M\) :

van Genuchten coefficient

\(M_{\rm v}\) :

Molar mass of water vapour

\(M_{\rm w}\) :

Water mass

\(m_{{\rm w},i}\) :

Water mass flow

\(n\) :

Porosity

\(N\) :

van Genuchten coefficient

\(p_{\rm c}\) :

Capillary pressure (matric suction)

\(p_{\rm g}\) :

Gas pressure

\(P_{\rm r}\) :

van Genuchten air entry pressure

\(p_{\rm v}\) :

Partial pressure of water vapour

\(p_{{\rm v},0}\) :

Pressure of saturated water vapour

\(p_{\rm w}\) :

Pore water pressure

\(q\) :

Deviatoric stress

\(\bar{q}\) :

Input water mass per unit area

\(Q\) :

Water sink term

\(q_{{\rm w},i}\) :

Average speed of water relative to the solid grains

\(R\) :

Gas constant

\(R_{\rm c}\) :

Uniaxial compression strength

\(R_{\rm c,sat}\) :

Saturated uniaxial compression strength

RH:

Air relative humidity

\(S_{\max }\) :

Maximum water degree of saturation

\(S_{\rm res}\) :

Residual water degree of saturation

\(S_{\rm{r,w}}\) :

Water degree of saturation

\(T\) :

Absolute temperature

\(\overline{t}_i\) :

Classical external traction force per unit area

\(\overline{T}_i\) :

Additional external double force per unit area

\(u_i\) :

Displacement field

\(u_{\rm r}\) :

Radial displacement

\(u_{\perp ,i}\) :

Normal vector of the displacement field

\(W_{\rm int}\) :

Internal work

\(W_{\rm ext}\) :

External work

References

  • Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106(4):326–330

    Article  Google Scholar 

  • Alshibli K, Batiste S, Sture S (2003) Strain localization in sand: plane strain versus triaxial compression. J Geotech Geoenviron Eng 129(6):483–494

    Article  Google Scholar 

  • Andra (2005) Dossier 2005 Argile. Synthesis: evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Tech rep, Paris, France

  • Armand G, Wileveau Y, Delay J (2007) Analyse des perméabilités mesurées autour des ouvrages du LSMHM au niveau −490 m pour déterminer des lois empiriques utilisables dans des calculs hydromécaniques couplés en milieu continu. Tech. Rep. D.NT.ALS.07.0453, Andra

  • Armand G, Leveau F, Nussbaum C, de La Vaissiere R, Noiret A, Jaeggi D, Landrein P, Righini C (2014) Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mech Rock Eng 47(1):21–41

    Article  Google Scholar 

  • Barnichon JD (1998) Finite element modelling in structural and petroleum geology. Ph.D. thesis, Faculté des Sciences Appliquées, Université de Liège, Belgium

  • Bazant ZP, Belytschko TB, Chang TP (1984) Continuum theory for strain softening. J Eng Mech 110(12):1666–1692

    Article  Google Scholar 

  • Bäckblom G (1991) The Äspö hard rock laboratory—a step toward the Swedish final repository for high-level radioactive waste. Tunn Undergr Sp Tech 6(4):463–467

    Article  Google Scholar 

  • Behlau J, Mingerzahn G (2001) Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Eng Geol 61(2–3):83–97

    Article  Google Scholar 

  • Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Phys Chem Earth 32(8–14):588–599

    Article  Google Scholar 

  • Bordeau F, Dedeckerv C, Billaux D (2007) Discrete modelling of drift behaviour in the meuse/haute-marne url (france). In: Clays in natural and engineered barriers for radioactive waste confinement, International Meeting, Lille, France

  • de Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithm aspects. Int J Numer Meth Eng 35(3):521–539

    Article  Google Scholar 

  • Bossart P, Meier PM, Moeri A, Trick T, Mayor JC (2002) Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66(1–2):19–38

    Article  Google Scholar 

  • Bésuelle P, Chambon R, Collin F (2006) Switching deformation modes in post-localization solutions with a quasibrittle material. J Mech Mater Struct 1(7):1115–1134

  • Chambon R, Moullet JC (2004) Uniqueness studies in boundary value problems involving some second gradient models. Comput Methods Appl Mech Eng 193(27–29):2771–2796

    Article  Google Scholar 

  • Chambon R, Caillerie D, Hassan NE (1998) One-dimensional localisation studied with a second grade model. Eur J Mech A Solid 17(4):637–656

    Article  Google Scholar 

  • Chambon R, Caillerie D, Matsushima T (2001) Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int J Solids Struct 38(46–47):8503–8527

    Article  Google Scholar 

  • Charlier R (1987) Approche unifiée de quelques problémes non linéaires de mécanique des milieux continus par la méthode des éléments finis (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux). Ph.D. thesis, Faculté des Sciences Appliquées, Université de Liège, Belgium

  • Charlier R, Collin F, Pardoen B, Talandier J, Radu JP, Gerard P (2013) An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo–Oxfordian argillite. Eng Geol 165:46–63

    Article  Google Scholar 

  • Chen L (2009) Contribution à la modélisation du comportement hydromécanique des géomatériaux semi-fragiles. Ph.D. thesis, Université des Sciences et Technologies de Lille, Lille

  • Chen L, Shao JF, Huang HW (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37(1–2):187–194

    Article  Google Scholar 

  • Collin F (2003) Couplages thermo-hydro-mècaniques dans les sols et les roches tendres partiellement saturès. Ph.D. thesis, Facultè des Sciences Appliquèes, Universitè de Liège, Belgium

  • Collin F, Chambon R, Charlier R (2006) A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Meth Eng 65(11):1749–1772

    Article  Google Scholar 

  • Collin F, Levasseur S, Chambon R (2009) Numerical post failure methods in multiphysical problems. Eur J Environ Civ Eng 13(7–8):983–1004

    Article  Google Scholar 

  • Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. Hermann, Paris

    Google Scholar 

  • Coussy O (2004) Poromechanics. John Wiley, New York

    Google Scholar 

  • Croisé J, Schlickenrieder L, Marschall P, Boisson JY, Vogel P, Yamamoto S (2004) Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Phys Chem Earth 29(1):3–15

    Article  Google Scholar 

  • Cruchaudet M, Noiret A, Talandier J, Armand G (2010a) Expérimentation SDZ—Bilan de la mise en place de l’instrumentation et des premières mesures à fin mars 2010—Centre de Meuse/Haute-Marne. Tech. Rep. D.RP.AMFS.09.0087, Andra

  • Cruchaudet M, Noiret A, Talandier J, Gatmiri B, Armand G (2010b) OHZ en GED: EDZ initiale et évolution. Tech. Rep. D.RP.AMFS.11.0016, Andra

  • Delage P, Howat MD, Cui YJ (1998) The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50(1–2):31–48

    Article  Google Scholar 

  • Delay J, Vinsot A, Krieguer JM, Rebours H, Armand G (2007) Making of the underground scientific experimental programme at the Meuse/Haute-Marne underground research laboratory, North Eastern France. Phys Chem Earth 32(1–7):2–18

    Article  Google Scholar 

  • Desrues J (2005) Hydro-mechanical coupling and strain localization in saturated porous media. Rev Eur Gènie Civ 9(5–6):619–634

    Google Scholar 

  • Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Met 28(4):279–321

    Article  Google Scholar 

  • Detournay E, Cheng AHD (1993) Comprehensive rock engineering: principles, practice and projects, vol 2 analysis and design method. Chapter 5: Fundamentals of poroelasticity. Pergamon Press, Oxford, pp 113–171

  • Diederichs MS (2003) Rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381

    Article  Google Scholar 

  • Emsley S, Olsson O, Stenberg L, Alheid HJ, Falls S (1997) ZEDEX: a study of damage and disturbance from tunnel excavation by blasting and tunnel boring. Svensk Kärnbränslehantering AB/Swedish Nuclear Fuel and Waste Management Co.

  • Finno R, Harris W, Mooney M, Viggiani G (1996) Strain localization and undrained steady state of sands. J Geotech Eng ASCE 122(6):462–473

    Article  Google Scholar 

  • Finno R, Harris W, Mooney M, Viggiani G (1997) Shear bands in plane strain compression of loose sand. Géotechnique 47(1):149–165

    Article  Google Scholar 

  • Félix B, Lebon P, Miguez R, Plas F (1996) A review of the ANDRA’s research programmes on the thermo-hydromechanical behavior of clay in connection with the radioactive waste disposal project in deep geological formations. Eng Geol 41(1–4):35–50

  • Gens A, Garcia-Molina AJ, Olivella S, Alonso EE, Huertas F (1998) Analysis of a full scale in situ test simulating repository conditions. Int J Numer Anal Met 22(7):515–548

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Gerard P, Léonard A, Masekanya JP, Charlier R, Collin F (2010) Study of the soil–atmosphere moisture exchanges through convective drying tests in non-isothermal conditions. Int J Numer Anal Meth Geomech 34(12):1297–1320

  • Germain P (1973) The method of virtual power in continuum mechanics. Part 2 microstructure. SIAM J Appl Math 25(3):556–575

    Article  Google Scholar 

  • Han C, Drescher A (1993) Shear bands in biaxial tests on dry coarse sand. Soils Found 33(1):118–132

    Article  Google Scholar 

  • Jenq YS, Shah SP (1988) Mixed-mode fracture of concrete. Int J Fract 38(2):123–142

    Google Scholar 

  • Kickmaier W, McKinley I (1997) A review of research carried out in European rock laboratories. Nucl Eng Des 176(1–2):75–81

    Article  Google Scholar 

  • Kotronis P, Collin F, Bésuelle P, Chambon R, Mazars J (2007) Local second gradient models and damage mechanics: 1D post-localization studies in concrete specimens. In: Exadaktylos G, Vardoulakis I (eds) Bifurcation, instabilities and degradation in geomechanics. Springer, Berlin, Heidelberg, New York, pp 127–142

  • Langer M (1999) Principles of geomechanical safety assessment for radioactive waste disposal in salt structures. Eng Geol 52(3–4):257–269

    Article  Google Scholar 

  • Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3):193–205

  • Levasseur S, Bésuelle P, Collin F, Chambon R, Charlier R, Viggiani C (2009) EDZ in clayey rocks: which effect on permeability? In: Li X, Jing L, Blaser P (eds) Impact of thermo-hydro-mechanical-chemical (THMC) processes on the safety of underground radioactive waste repositories. Proceedings of the European Commission TIMODAZ-THERESA International Conference. European Commission, Luxembourg, pp 173–183

  • Levasseur S, Charlier R, Frieg B, Collin F (2010) Hydro-mechanical modelling of the excavation damaged zone around an underground excavation at Mont Terri Rock Laboratory. Int J Rock Mech Min 47(3):414–425

    Article  Google Scholar 

  • Léonard A, Blacher S, Marchot P, Crine M (2002) Use of X-ray microtomography to follow the convective heat drying of wastewater sludges. Dry Technol 20(4–5):1053–1069

  • Léonard A, Blacher S, Marchot P, Pirard JP, Crine M (2003) Image analysis of X-ray microtomograms of soft materials during convective drying. J Microsc 212(Pt2):197–204

  • Léonard A, Blacher S, Marchot P, Pirard J, Crine M (2005) Convective drying of wastewater sludges: influence of air temperature, superficial velocity and humidity on the kinetics. Dry Technol 23(8):1667–1679

  • Matray JM, Savoye S, Cabrera J (2007) Desaturation and structure relationships around drifts excavated in the well-compacted Tournemire’s argillite (Aveyron, France). Eng Geol 90(1–2):1–16

    Article  Google Scholar 

  • Mayor JC, Velasco M, García-Siñeriz JL (2007) Ventilation experiment in the Mont Terri underground laboratory. Phys Chem Earth 32(8–14):616–628

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech An 16(1):51–78

    Article  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mokni M, Desrues J (1999) Strain localisation measurements in undrained plane-strain biaxial test on Hostun RF sand. Mech Cohes Frict Mat 4(4):419–441

    Article  Google Scholar 

  • Neerdael B, Boyazis JP (1997) The Belgium underground research facility: status on the demonstration issues for radioactive waste disposal in clay. Nucl Eng Des 176(1–2):89–96

    Article  Google Scholar 

  • Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal Met 32(7):771–801

    Article  Google Scholar 

  • Olivella S, Alonso EE (2008) Gas flow through clay barriers. Géotechnique 58(3):157–176

  • Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996a) Gradient-enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39:3391–3403

    Article  Google Scholar 

  • Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP, Spee I (1996b) Some observations on localisation in non-local and gradient damage models. Eur J Mech A/Solids 15(6):937–953

    Google Scholar 

  • Peron H, Hueckel T, Laloui L, Hu LB (2009a) Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Can Geotech J 46(10):1177–1201

    Article  Google Scholar 

  • Peron H, Laloui L, Hueckel T, Liang BH (2009b) Desiccation cracking of soils. Eur J Environ Civ Eng 13(7–8):869–888

    Article  Google Scholar 

  • Pietruszczak ST, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Meth Eng 17(3):327–334

  • Pietruszczak ST, Pande GN (2001) Description of soil anisotropy based on multi-laminate framework. Int J Numer Anal Meth Geomech 25(2):197–206

    Article  Google Scholar 

  • Pietruszczak ST, Lydzba D, Shao JF (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39(3):637–648

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  • Plassart R, Fernandes R, Giraud A, Hoxha D, Laigle F (2013) Hydromechanical modelling of an excavation in an underground research laboratory with an elastoviscoplastic behaviour law and regularization by second gradient of dilation. Int J Rock Mech Min 58:23–33

    Google Scholar 

  • Romero E, Gens A, Lloret A (2001) Temperature effects on the hydraulic behaviour of an unsaturated clay. Geotech Geol Eng 19(3–4):311–332

    Article  Google Scholar 

  • Sieffert Y, Holo SA, Chambon R (2009) Loss of uniqueness of numerical solutions of the borehole problem modelled with enhanced media. Int J Solids Struct 46(2):3173–3197

    Article  Google Scholar 

  • Ta AN (2009) Etude de l’interaction sol–atmosphére en chambre environnementale. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris

  • Toupin R (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  Google Scholar 

  • Tsang CF, Bernier F (2004) Definitions of excavation disturbed zone and excavation damaged zone, in impact of the excavation disturbed or damaged zone (EDZ) on the performance of radioactive waste geological repositories. In: Proceedings European Commission CLUSTER Conference and Workshop on EDZ in radioactive waste geological repositories, Luxembourg

  • Tsang CF, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min 42(1):109–125

    Article  Google Scholar 

  • Vardoulakis I, Goldscheider M, Gudehus Q (1978) Formation of shear bands in sand bodies as a bifurcation problem. Int J Numer Anal Met 2(2):99–128

    Article  Google Scholar 

  • Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32(8–14):866–878

    Article  Google Scholar 

  • Wu S, Wang X (2010) Mesh dependence and nonlocal regularization of one-dimensional strain softening plasticity. J Eng Mech 136(11):1354–1365

    Article  Google Scholar 

  • Young JF (1967) Humidity control in the laboratory using salt solutions—a review. J Appl Chem 17(9):241–245

    Article  Google Scholar 

  • Zervos A, Papanastasiou P, Vardoulakis I (2001a) Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. Int J Solids Struct 38(30–31):5081–5095

    Article  Google Scholar 

  • Zervos A, Papanastasious P, Vardoulakis I (2001b) A finite element displacement formulation for gradient elastoplasticity. Int J Numer Meth Eng 50(6):1369–1388

    Article  Google Scholar 

  • Zhang F, Jia Y, Bian HB, Duveau G (2013) Modeling the influence of water content on the mechanical behavior of Callovo–Oxfordian argillite. Phys Chem Earth 65:79–89

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Andra for the availability of the results of experimental measurements performed in its URL and the FRIA-F.R.S.-FNRS, the National Funds of Scientific Research in Belgium, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Pardoen.

Additional information

B. Pardoen: FRIA, F.R.S.-FNRS scholarship holder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardoen, B., Levasseur, S. & Collin, F. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone. Rock Mech Rock Eng 48, 691–714 (2015). https://doi.org/10.1007/s00603-014-0580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0580-2

Keywords

Navigation