Skip to main content
Log in

Mechanical and Elastic Properties of Transversely Isotropic Slate

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Planes of weakness like schistosity and foliation affect the strength and deformational behaviors of rocks. In this paper, an attempt has been made to study the elastic and strength behavior of slate rocks obtained from foundation of Sardasht dam site in Iran. Wet and dry specimens with different orientation of foliation were evaluated under uniaxial, triaxial, and Brazilian tests. According to the results obtained, slate mechanically pronounced U-shaped anisotropy in uniaxial and triaxial compression tests. In addition, the degree of anisotropy for the slates tested in current study was relatively high, showing the effect of foliation plane on strength and elastic parameters. It was concluded that stiffness of the samples decrease as the angle of anisotropy reaches 30–40°. This change was more pronounced for wet comparing to dry samples. However, the tensile strength obtained during Brazilian tests indicated that there is no apparent relationship between angle of anisotropy and tensile strength. However, increasing the water saturation decreased the tensile strength of the samples. The calculated elastic moduli referring to different anisotropy angles could be valuable for the design of various engineering structures in planar textured rock masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akai K, Yammamoto K, Ariola M (1970) Experimentele forschung Uber anisotropische eigenschaften von kristallinen schierfern. In: Proceedings on rock mechanics, vol 11. Belgrade, pp 181–6

  • Al-Harthi AA (1998) Effect of planar structures on the anisotropy of Ranyah sandstone. Saudi Arabia Eng Geol 50:49–57

    Google Scholar 

  • Allirote D, Boehler JP (1970) Evaluation of mechanical properties of a stratified rock under confining pressure. In: Proceedings of the Fourth Congress on ISRM, vol 1. Montreux, pp 15–22

  • Amadei B (1996) Importance of anisotropy when estimation and measuring in situ stresses in rock. Int J Rock Mech Min Sci 33(3):293–326

    Article  Google Scholar 

  • Amadei B, Rogers JD, Goodman RE (1983) Elastic constants and tensile strength of anisotropic rocks. In: Proceedings of the fifth international congress of rock mechanics 1983, pp A189–96

  • Amadei B, Savage WZ, Swolfs HS (1987) Gravitational stresses in anisotropic rock masses. Int J Rock Mech Min Sci 24:5–14

    Article  Google Scholar 

  • Attewell PB, Sandford MR (1974) Intrinsic shear strength of brittle anisotropic rock-I: experimental and mechanical interpretation. Int J Rock Mech Min Sci 11:423–430

    Article  Google Scholar 

  • Barla G (1974) Rock anisotropy: theory and laboratory testing. Rock Mech 1:31–69

    Google Scholar 

  • Barla G, Innaurato N (1973) Indirect tensile testing of anisotropic rocks. Rock Mech 5:215–230

    Article  Google Scholar 

  • Bazant ZP, Kazcmi MT, Hasegawa Maznrs (1991) SIZC effect in Brazthau split-cyhndcr tests: measurements and fracture analysis. ACI Mater J 88:325–332

    Google Scholar 

  • Brown ET, Richard LR, Barr MV (1977) Shear strength characteristics of Delabole slate. In: Proceedings conference on rock engineering. New Castle Upon Tyne, pp 31–51

  • Cai M (2013) Fracture initiation and propagation in a Brazilian disc with a plane interface: a numerical study. Rock Mech Rock Eng 46(2):289–302

    Article  Google Scholar 

  • Carneiro F, Barcellos A (1953) International association of testing and research laboratories for materials and structures. RILEM Bull 13:99–125

    Google Scholar 

  • Chen C, Hsu SC (2001) Measurement of indirect tensile strength of anisotropic rocks by the ring test. Rock Mech Rock Eng 34(4):293–321

    Article  Google Scholar 

  • Chen C, Pan E, Amadei B (1998) Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int J Rock Mech Min Sci 35:195–218

    Article  Google Scholar 

  • Chen C, Chen CS, Wu JH (2008) Fracture toughness analysis on cracked ring disks of anisotropic rock. Rock Mech Rock Eng 41(4):539–562

    Google Scholar 

  • Corthesy R, Gill DE, Leite MH (1993) An integrated approach to rock stress measurement in anisotropic non-linear elastic rock. Int J Rock Mech Min Sci 30(4):395–411

    Article  Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  • Dan DQ (2011) Brazilian test on anisotropic rocks—laboratory experiment. Numerical simulation and interpretation. Institut für Geotechnik, Freiberg

  • Deklotz EJ, Brown JW, Stemler OA (1966) Anisotropy of schistose gneiss. In: Proceedings of the first congress, vol 1. International society of rock mechanics, Lisbon, pp 465–70

  • DGGT (2008) Lndirekter Zugversuchan Gesteinsproben—Spaltzugversuch. Deutschen Gesellschaftfur Geotechnik—Bautechnik. Ernst & Sohn, Berlin; 8-b, pp 623–7

  • Donath F (1964) Strength variation and deformational behavior in anisotropic rock. In: Judd WR (ed) State of stress in the Earth’s crust. Elsevier, New York, pp 281–298

    Google Scholar 

  • Everitt RA, Lajtai EZ (2004) The influence of rock fabric on excavation damage in the Lac du Bonnett granite. Int J Rock Mech Min Sci 41(8):1277–1303

    Article  Google Scholar 

  • Exadaktylos GE (2001) On the constraints and relations of elastic constants of transversely isotropic geomaterials. Int J Rock Mech Min Sci 38(7):941–956

    Article  Google Scholar 

  • Gao Z, Zhao J, Yao Y (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solids Struct 47:3166–3185

    Article  Google Scholar 

  • Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39:335–354

    Article  Google Scholar 

  • Gong QM, Zhao J, Jiao YY (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Sp Technol 20(2):183–191

    Article  Google Scholar 

  • Gonzaga GG, Leite MH, Corthesy R (2008) Determination of anisotropic deformability parameters from a single standard rock specimen. Int J Rock Mech Min Sci 45(8):1420–1438

    Article  Google Scholar 

  • Hakala M, Kuula H, Hudson JA (2007) Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland. Int J Rock Mech Min Sci 44(1):14–46

    Article  Google Scholar 

  • Hobbs DW (1964) The strength and stress–strain characteristics of coal in triaxial compression. J Geo 72:214–231

    Article  Google Scholar 

  • Hoek E (1968) Brittle failure of rock. In: Stagg KG, Zienkiewicz OC (eds) Rock mechanics in engineering practice. Willey, London

    Google Scholar 

  • Homand F, Morel E, Henry JP, Cuxac P, Hammade E (1993) Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods. Int J Rock Mech Min Sci 30:527–535

    Article  Google Scholar 

  • Horino FG, Ellickson ML (1970) A method of estimating strength of rock containing planes of weakness. Report of investigation 7449, US Bureau of Mines

  • Hrouda F, Zdenek P, Wohlgemuth J (1993) Development of magnetic and elastic anisotropies in slates during progressive deformation. Phys Earth Planet Int 77:251–265

    Article  Google Scholar 

  • Hudson J, Harrison J (1997) Introduction to rock mechanic. Elsevier science LTD, London

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech 15:99–103

    Article  Google Scholar 

  • ISRM (1981) Suggested method for determining uniaxial compressive strength and deformability of rock materials. In rock characterization testing and monitoring. Int J Rock Mech Min Sci 18(6):113–116

    Google Scholar 

  • ISRM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci 20:285–290

    Article  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Chapman & Hall, London

  • Jyh Jong L, Yang MT, Hsieh H-Y (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34:837–849

    Article  Google Scholar 

  • Kafka V, Cejp J, Kvet V, Vokoun D (1996) On the size effect in the Brazilian split-cylinder test. Acta Techruca CSA Ceskoslovensk Akadcnne I’ed 41(4):385–404

    Google Scholar 

  • Ko HY, Gerstle KH (1976) Elastic properties of two coals. Int J Rock Mech Min Sci Geomech Abstr 13(3):81–90

    Article  Google Scholar 

  • Kwasniewski M (2009) Testing and modeling of the anisotropy of tensile strength of rocks. In: Proceedings of the international conference on rock joints and jointed rock masses. Tucson, Arizona, USA, January 7–8

  • Li D, Wong L (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287

    Google Scholar 

  • McCabe WM, Koerner RM (1975) High pressure shear strength of and anisotropic mica schist rock. Int J Rock Mech Min Sci 12:219–228

    Article  Google Scholar 

  • Min KB, Lee CI, Choi HM (2003) An experimental and numerical study of the in situ stress measurement on transversely isotropic rock by overcoring method. In: Proceedings of the third international symposium on rock stress. Kumamoto, Japan, pp 189–95

  • Nasseri MHB, Seshagiri Rao K, Ramamurthy T (1996) Engineering geological and geotechnical responses of schistose rocks from dam project areas in India. Eng Geol 44:183–201

    Article  Google Scholar 

  • Nasseri MH, Rao KS, Ramamurthy T (1997) Failure mechanism in schistose rocks. Int J Rock Mech Min Sci 34(3–4):219

    Google Scholar 

  • Nasseri MHB, Rao KS, Ramamurthy T (2003) Anisotropic strength and deformational behavior of Himalayan schists. Int J Rock Mech Min Sci 40:3–23

    Article  Google Scholar 

  • Newman DA, Bennett DG (1990) Effect of specimen size and stress rate for the Brazilian IcSI. A statistical analysis. Rock Mech Rock Eng 23(2):123–134

    Google Scholar 

  • Nova R (1980) Failure of transversely isotropic rocks in triaxial compression. Int J Rock Mech Min Sci 17:325–332

    Article  Google Scholar 

  • Pomeroy CD, Hobbs DW, Mahmoud A (1971) The effect of weakness plane orientation on the fracture of Barnsley hard coal by triaxial compression. Int J Rock Mech Min Sci 8:227–238

    Article  Google Scholar 

  • Ramamurthy T (1988) Strength, modulus responses of anisotropic rocks. In: Hudson JA (ed) Compressive rock engineering, vol 1. Pergamon, Oxford, pp 313–329

    Google Scholar 

  • Ramamurthy T (1993) Strength, modulus responses of anisotropic rocks. In: Hudson JA (ed) Compressive rock engineering. Pergamon, Oxford, vol 1, pp 313–29

  • Rao KS, Rao GV, Ramamurthy T (1986) A strength criterion for anisotropic rocks. Indian Geotec J 16(4):317–333

    Google Scholar 

  • Rocco C, Gumen GV, Planas J, Elices M (1999a) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mat Struct 32:437–444

    Google Scholar 

  • Rocco C, Guinea GV, Planas J, Elices M (1999b) Size effect and boundary conditions III the Brazilian test: experimental verification. Mat Struc 32:210–217

    Article  Google Scholar 

  • Saroglou H, Tsiambaos G (2008) A modified Hoek–Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234

    Article  Google Scholar 

  • Singh J, Ramamurthy T, Rao GV (1989) Strength anisotropies in rocks. Indian Geotec J 19(2):147–166

    Google Scholar 

  • Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2):269–284

    Article  Google Scholar 

  • Song I, Suh M, Woo YK, Hao T (2004) Determination of the elastic modulus set of foliated rocks from ultrasonic velocity measurements. Eng Geol 72(3–4):293–308

    Article  Google Scholar 

  • Stjern G, Agle A, Horsrud P (2003) Local rock mechanical knowledge improves drilling performance in fractured formations at the Heidrun field. J Petrol Sci Eng 38:83–96

    Article  Google Scholar 

  • Szwilski AB (1984) Determination of the anisotropic elastic moduli of coal. Int J Rock Mech Min Sci Geomech Abstr 21(1):3–12

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47:313–322

    Article  Google Scholar 

  • Tien YM, Tsao PF (2000) Preparation and mechanical properties of artifice transversely isotropic rock. Int J Rock Mech Min Sci 37:1001–1012

    Article  Google Scholar 

  • Vickers BL, Thill RE (1969) A new technique for preparing rock spheres. J Sci Instrum 2:901–902

    Article  Google Scholar 

  • Wang CD, Tzeng CS, Pan E, Liao J (2003) Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space. Int J Rock Mech Min Sci 40(5):667–685

    Article  Google Scholar 

  • Worotnicki G, CSIRO (1993) Triaxial stress measurement cell. In: Hudson JA (eds) Compressive rock engineering, vol 3. Pergamon Press, Oxford, pp 329–94

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholami, R., Rasouli, V. Mechanical and Elastic Properties of Transversely Isotropic Slate. Rock Mech Rock Eng 47, 1763–1773 (2014). https://doi.org/10.1007/s00603-013-0488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0488-2

Keywords

Navigation