Skip to main content
Log in

Comparison of Blast-Induced Damage Between Presplit and Smooth Blasting of High Rock Slope

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on the comparison of damage induced by smooth blasting and presplit blasting based on the excavation of high rock slope. The whole damage process of the smooth blasting and presplit blasting excavation method is studied by using a cumulative blasting damage numerical simulation technology based on the secondary development of the dynamic finite element code LS-DYNA. The results demonstrate that, in the case of contour blasting with the method of smooth blasting, the total damage of rock slope is a result of cumulated damage induced by the production hole, buffering hole, and smooth hole. Among the total damage, the blasting of the production hole is the main resource, followed by the smooth and buffering holes. For the presplit blasting, the final damage of rock slope is mainly induced by presplit blasting itself. The spatial distribution characteristics of the final damage zone of two methods are compared. Two classes of damage zone could be found in smooth blasting excavation; one of them is the columnar high-degree damage zone around the slope surface and the other is the low-degree damage zone located in the middle of the slope. But in the case of presplit blasting, there is only the columnar high-degree damage zone around the slope surface. Finally, a damage control suggestion for two blasting excavation methods is proposed and verified based on the excavation of the temporary shiplock slopes of the Three Gorges Project in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\( \lambda \) :

Sensitivity constant

D C :

Compressive damage symbol

\( D \) :

Damage symbol

\( \rho \) :

Density

\( s_{ij} \) :

Deviatoric stress tensor

a :

Average crack radius

\( k \) :

Material constant

\( \beta \) :

Material constant

\( \overline{\mu } \) :

Poisson’s ratio for damaged material

\( \mu \) :

Poisson’s ratio for undamaged material

\( \varepsilon_{ij}^{\text{p}} \) :

Plastic strain tensor

\( \overline{G} \) :

Shear modulus for damaged material

\( \sigma_{ij} \) :

Stress tensor

\( D_{\text{t}} \) :

Tensile damage symbol

\( C \) :

Longitudinal wave velocity

\( \varepsilon_{\text{v}} \) :

Volumetric tensile strain

\( {{\Uplambda}} \) :

von Mises equivalent stress

\( \sigma_{\text{y}} \) :

Yield stress

\( C_{\text{d}} \) :

Crack density parameter

\( K_{\text{IC}} \) :

Fracture toughness of the material

\( m \) :

Material constant

\( W_{\text{p}} \) :

Plastic work

\( \dot{\varepsilon }_{{{\text{v}}\hbox{max} }} \) :

Maximum volumetric tensile strain rate

\( \overline{K} \) :

Bulk modulus for damaged material

\( K \) :

Bulk modulus for undamaged material

References

  • Ambrosini RD, Luccioni BM, Danesi RF, Riera JD, Rocha MM (2002) Size of craters produced by explosive charges on or above the ground surface. Shock Waves 12(1):69–78. doi:10.1007/s00193-002-0136-3

    Article  Google Scholar 

  • Bohloli B, Hovén E (2007) A laboratory and full-scale study on the fragmentation behavior of rocks. Eng Geol 89:1–8. doi:10.1016/j.enggeo.2006.05.010

    Article  Google Scholar 

  • Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97. doi:10.1016/0020-7683(76)90044-5

    Article  Google Scholar 

  • De A (2012) Numerical simulation of surface explosions over dry, cohesionless soil. Comput Geotech 43:72–79. doi:10.1016/j.compgeo.2012.02.007

    Article  Google Scholar 

  • Donze FV, Bouchez J, Magnier SA (1997) Modeling fractures in rock blasting. Int J Rock Mech Min Sci 34(8):1153–1163. doi:10.1016/S1365-1609(97)80068-8

    Article  Google Scholar 

  • Englman R, Jaeger Z (1987) Theoretical aids for the improvement of blasting efficiencies in oil shale and rocks. AP-TR-12/87, Soreq Nuclear Research Center, Yavne, Israel

  • Esen S, Onederra I, Bilgin HA (2003) Modelling the size of the crushed zone around a blasthole. Int J Rock Mech Min Sci 40(4):485–495. doi:10.1016/S1365-1609(03)00018-2

    Article  Google Scholar 

  • Furlong JR, Davis JF, Alme ML (1990) Modeling the dynamic load/unload behavior of ceramics under impact loading. RDA-TR-00.0-0001, R&D Associates, Arlington, VA

  • García Bastante F, Alejano L, González-Cao J (2012) Predicting the extent of blast-induced damage in rock masses. Int J Rock Mech Min Sci 56:44–53. doi:10.1016/j.ijrmms.2012.07.023

    Google Scholar 

  • Grady DE (1983) The mechanics of fracture under high-rate stress loading. In: Bazant ZP (ed) Preprints of the William Prager Symposium on Mechanics of Geomaterials: Rocks, Concrete, Soils. Northwestern University, pp 149–88

  • Grady DE, Kipp ME (1980) Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min Sci Geomech Abstr 17(3):147–157. doi:10.1016/0148-9062(80)91361-3

    Article  Google Scholar 

  • Hamdi E, Romdhane NB, Le Cléac’h JM (2011) A tensile damage model for rocks: application to blast induced damage assessment. Comput Geotech 38:133–141. doi:10.1016/j.compgeo.2010.10.009

    Article  Google Scholar 

  • Hao H, Wu C, Seah CC (2002) Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models. Part 2: stochastic approach. Rock Mech Rock Eng 35(2):95–108. doi:10.1007/s006030200013

    Article  Google Scholar 

  • Holmberg R, Persson PA (1978) The Swedish approach to contour blasting. In: Proceedings of the 4th Conference on Explosives and Blasting Technique, New Orleans, Louisiana, February 1978. ISEE, pp 113–127

  • Hu YG, Lu WB, Jin XH, Chen M, Yan P (2012) Numerical simulation for excavation blasting dynamic damage of rock high slope. Chin J Rock Mech Eng 31(11):2204–2213 (in Chinese)

    Google Scholar 

  • Hudson JA, Bäckström A, Rutqvist J, Jing L, Backers T, Chijimatsu M, Christiansson R, Feng X-T, Kobayashi A, Koyama T, Lee H-S, Neretnieks I, Pan P-Z, Rinne M, Shen B-T (2009) Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal. Environ Geol 57:1275–1297. doi:10.1007/s00254-008-1554-z

    Article  Google Scholar 

  • Khandelwal M, Monjezi M (2013) Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mech Rock Eng 46(2):389–396. doi:10.1007/s00603-012-0269-3

    Article  Google Scholar 

  • Li HB, Xia X, Li JC, Zhao J, Liu B, Liu YQ (2011) Rock damage control in bedrock blasting excavation for a nuclear power plant. Int J Rock Mech Min Sci 48(2):210–218. doi:10.1016/j.ijrmms.2010.11.016

    Article  Google Scholar 

  • Liu LQ, Katsabanis PD (1997) Development of a continuum damage model for blasting analysis. Int J Rock Mech Min Sci 34:217–231. doi:10.1016/S0148-9062(96)00041-1

    Article  Google Scholar 

  • Lu WB, Hustrulid WA (2001) Optimization of the contour blasting during rock slope excavation at the Three Gorges Project. In: Proceedings of the 38th US Rock Mechanics Symposium, Washington, DC, July 2001, pp 387–392

  • Lu WB, Hustrulid WA (2003) The Lu–Hustrulid approach for calculating the peak particle velocity caused by blasting. In: Proceedings of the 2nd World Conference on Explosives and Blasting Technique, Prague, Czech Republic, September 2003, pp 486–488

  • Lu WB, Yang JH, Chen M, Zhou CB (2011a) An equivalent method for blasting vibration simulation. Simul Model Pract Theory 19(9):2050–2062. doi:10.1016/j.simpat.2011.05.012

    Article  Google Scholar 

  • Lu WB, Chen M, Geng X, Shu DQ, Zhou CB (2011b) A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations. Tunn Undergr Space Technol 29:31–39. doi:10.1016/j.tust.2011.12.008

    Article  Google Scholar 

  • Ma GW, An XM (2008) Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci 45:966–975. doi:10.1016/j.ijrmms.2007.12.002

    Article  Google Scholar 

  • Malmgren L, Saiang D, Töyrä J, Bodare A (2007) The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—by seismic measurements. J Appl Geophys 61:1–15. doi:10.1016/j.jappgeo.2006.04.004

    Article  Google Scholar 

  • Mandal SK, Singh MM, Dasgupta S (2008) Theoretical concept to understand plan and design smooth blasting pattern. Geotech Geol Eng 26(4):399–416. doi:10.1007/s10706-008-9177-4

    Article  Google Scholar 

  • Martino JB, Chandler NA (2004) Excavation-induced damage studies at the underground research laboratory. Int J Rock Mech Min Sci 41:1413–1426. doi:10.1016/j.ijrmms.2004.09.010

    Article  Google Scholar 

  • Mohammadi S, Pooladi A (2007) Non-uniform isentropic gas flow analysis of explosion in fractured solid media. Finite Elem Anal Des 43:478–493. doi:10.1016/j.finel.2006.11.005

    Article  Google Scholar 

  • Netherton MD, Stewart MG (2009) The effects of explosive blast load variability on safety hazard and damage risks for monolithic window glazing. Int J Impact Eng 36:1346–1354. doi:10.1016/j.ijimpeng.2009.02.009

    Article  Google Scholar 

  • Ning YJ, Yang J, Ma GW, Chen PW (2011) Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock Mech Rock Eng 44:483–490. doi:10.1007/s00603-010-0132-3

    Article  Google Scholar 

  • Onederra IA, Furtney JK, Sellers E, Iverson S (2013) Modelling blast induced damage from a fully coupled explosive charge. Int J Rock Mech Min Sci 58(4):73–84. doi:10.1016/j.ijrmms.2012.10.004

    Google Scholar 

  • Park D, Jeon B, Jeon S (2009) A numerical study on the screening of blast-induced waves for reducing ground vibration. Rock Mech Rock Eng 42:449–473. doi:10.1007/s00603-008-0016-y

    Article  Google Scholar 

  • Rathore SS, Bhandari S (2007) Controlled fracture growth by blasting while protecting damages to remaining rock. Rock Mech Rock Eng 40(3):317–326. doi:10.1007/s00603-005-0080-5

    Article  Google Scholar 

  • Saharan MR, Mitri HS (2008) Numerical procedure for dynamic simulation of discrete fractures due to blasting. Rock Mech Rock Eng 41(5):641–670. doi:10.1007/s00603-007-0136-9

    Article  Google Scholar 

  • Saiang D (2010) Stability analysis of the blast-induced damage zone by continuum and coupled continuum–discontinuum methods. Eng Geol 116:1–11. doi:10.1016/j.enggeo.2009.07.011

    Article  Google Scholar 

  • Saiang D, Nordlund E (2009) Numerical analyses of the influence of blast-induced damaged rock around shallow tunnels in brittle rock. Rock Mech Rock Eng 42(3):421–448. doi:10.1007/s00603-008-0013-1

    Article  Google Scholar 

  • Sheng Q, Yue ZQ, Lee CF, Tham LG, Zhou H (2002) Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China. Int J Rock Mech Min Sci 39:165–184. doi:10.1016/S1365-1609(02)00015-1

    Article  Google Scholar 

  • Taylor LM, Chen EP, Kuszmaul JS (1986) Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput Methods Appl Mech Eng 55(3):301–320

    Article  Google Scholar 

  • Tripathy GR, Gupta ID (2002) Prediction of ground vibrations due to construction blasts in different types of rock. Rock Mech Rock Eng 35(3):195–204. doi:10.1007/s00603-001-0022-9

    Article  Google Scholar 

  • Wang E, Shukla A (2010) Analytical and experimental evaluation of energies during shock wave loading. Int J Impact Eng 37:1188–1196. doi:10.1016/j.ijimpeng.2010.07.003

    Article  Google Scholar 

  • Wang ZL, Li YC, Shen RF, Wang JG (2007) Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile. Comput Geotech 34:1–9. doi:10.1016/j.compgeo.2006.09.001

    Article  Google Scholar 

  • Yang R, Bawden WF, Katsabanis PD (1996) A new constitutive model for blast damage. Int J Rock Mech Min Sci Geomech Abstr 33:245–254. doi:10.1016/0148-9062(95)00064-X

    Article  Google Scholar 

  • Zhu ZM, Mohanty BH, Xie HP (2007) Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci 44:412–424. doi:10.1016/j.ijrmms.2006.09.002

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chinese National Programs for Fundamental Research and Development (973 Program) (2011CB013501), Chinese National Science Fund for Distinguished Young Scholars (51125037), Chinese National Natural Science Foundation (50909077 and 51179138), and the Fundamental Research Funds for the Central Universities (2012206020205). The authors wish to express their thanks to all the supporters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Lu, W., Chen, M. et al. Comparison of Blast-Induced Damage Between Presplit and Smooth Blasting of High Rock Slope. Rock Mech Rock Eng 47, 1307–1320 (2014). https://doi.org/10.1007/s00603-013-0475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0475-7

Keywords

Navigation