Skip to main content
Log in

Discrete Scaling in Non-integer Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We explore the effect of a finite two-body energy in the discrete scale symmetry regime of two heavy bosonic impurities immersed in a light bosonic system. By means of the Born–Oppenheimer approximation in non-integer dimensions (D), we discuss the effective potential of the heavy-particles Schrodinger equation. We study how including the two-body energy in the effective potential changes the light-particles wave function and the ratio between successive Efimov states. We present the limit cycles associated with correlation between the energy of successive levels for the three and four-body systems. Our study is exemplified by considering a system composed of N-bosons, namely two Rubidium atoms interacting with N-2 Lithium ones (\(^7\)Li\(_{N-2}{-}^{87}\)Rb\(_2\)), which represent compounds of current experimental interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Braaten, E., Hammer, H.-W.: Universality in few-body systems with large scattering length. Phys. Rept. 428, 259–390 (2006) https://doi.org/10.1016/j.physrep.2006.03.001arXiv:cond-mat/0410417

  2. T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Universal aspects of light halo nuclei. Prog. Part. Nucl. Phys. 67, 939–994 (2012). https://doi.org/10.1016/j.ppnp.2012.06.001

    Article  ADS  CAS  Google Scholar 

  3. C.H. Greene, P. Giannakeas, J. Pérez-Ríos, Universal few-body physics and cluster formation. Rev. Mod. Phys. 89, 035006 (2017). https://doi.org/10.1103/RevModPhys.89.035006

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Braaten, H.-W. Hammer, Efimov physics in cold atoms. Ann. Phys. 322(1), 120–163 (2007). https://doi.org/10.1016/j.aop.2006.10.011

    Article  ADS  CAS  Google Scholar 

  5. S. Moroz, J.P. D’Incao, D.S. Petrov, Generalized \(\text{ Efimov }\) effect in one dimension. Phys. Rev. Lett. 115, 180406 (2015). https://doi.org/10.1103/PhysRevLett.115.180406

    Article  ADS  CAS  PubMed  Google Scholar 

  6. M.J. Gullans, S. Diehl, S.T. Rittenhouse, B.P. Ruzic, J.P. D’Incao, P. Julienne, A.V. Gorshkov, J.M. Taylor, Efimov states of strongly interacting photons. Phys. Rev. Lett. 119, 233601 (2017). https://doi.org/10.1103/PhysRevLett.119.233601

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M. Sun, H. Zhai, X. Cui, Visualizing the \(\text{ Efimov }\) correlation in bose polarons. Phys. Rev. Lett. 119, 013401 (2017). https://doi.org/10.1103/PhysRevLett.119.013401

    Article  ADS  PubMed  Google Scholar 

  8. V. Efimov, Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33(8), 563–564 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  ADS  CAS  Google Scholar 

  9. T. Kraemer, M. Mark, P. Waldburger, J. Danzl, C. Chin, B. Engeser, A. Lange, K. Pilch, A. Jaakkola, H. Nägerl, R. Grimm, Evidence for \(\text{ Efimov }\) quantum states in an ultracold gas of caesium atoms. Nature 440(7082), 315–318 (2006). https://doi.org/10.1038/nature04626

    Article  ADS  CAS  PubMed  Google Scholar 

  10. B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Observation of the second triatomic resonance in \(\text{ Efimov }\)’s scenario. Phys. Rev. Lett. 112, 190401 (2014). https://doi.org/10.1103/PhysRevLett.112.190401

    Article  ADS  CAS  PubMed  Google Scholar 

  11. J.R. Williams, E.L. Hazlett, J.H. Huckans, R.W. Stites, Y. Zhang, K.M. O’Hara, Evidence for an excited-state \(\text{ Efimov }\) trimer in a three-component fermi gas. Phys. Rev. Lett. 103, 130404 (2009). https://doi.org/10.1103/PhysRevLett.103.130404

    Article  ADS  CAS  PubMed  Google Scholar 

  12. R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M. Weidemüller, Observation of \(\text{ Efimov }\) resonances in a mixture with extreme mass imbalance. Phys. Rev. Lett. 112, 250404 (2014). https://doi.org/10.1103/PhysRevLett.112.250404

    Article  ADS  CAS  PubMed  Google Scholar 

  13. S.-K. Tung, K. Jiménez-García, J. Johansen, C.V. Parker, C. Chin, Geometric scaling of \(\text{ Efimov }\) states in a \(^{6}\) li - \(^{133}\)cs mixture. Phys. Rev. Lett. 113, 240402 (2014). https://doi.org/10.1103/PhysRevLett.113.240402

    Article  ADS  CAS  PubMed  Google Scholar 

  14. R.S. Bloom, M.-G. Hu, T.D. Cumby, D.S. Jin, Tests of universal three-body physics in an ultracold bose-fermi mixture. Phys. Rev. Lett. 111, 105301 (2013). https://doi.org/10.1103/PhysRevLett.111.105301

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Naidon, P., Endo, S. (2017) Efimov physics: a review. Rept. Prog. Phys. 80(5), 056001 https://doi.org/10.1088/1361-6633/aa50e8, arXiv:1610.09805 [quant-ph]

  16. G. Skorniakov, K. Ter-Martirosian, Three body problem for short range forces i. scattering of low energy neutrons by deuterons. Soviet Phys. JETP 4(5), 648–661 (1957)

    MathSciNet  Google Scholar 

  17. B. Acharya, C. Ji, L. Platter, Effective-field-theory analysis of \(\text{ Efimov }\) physics in heteronuclear mixtures of ultracold atomic gases. Phys. Rev. A 94, 032702 (2016). https://doi.org/10.1103/PhysRevA.94.032702

    Article  ADS  CAS  Google Scholar 

  18. D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, \(d\)-Dimensional three-body bound-state problem with zero-range interactions. Phys. Rev. A 106, 023311 (2022). https://doi.org/10.1103/PhysRevA.106.023311

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. R.A. Minlos, A system of three quantum particles with point-like interactions. Russian Math. Surv. 69(3), 539–564 (2014). https://doi.org/10.1070/RM2014v069n03ABEH004900

    Article  ADS  Google Scholar 

  20. A. Mohapatra, E. Braaten, Conformality lost in \(\text{ Efimov }\) physics. Phys. Rev. A 98, 013633 (2018). https://doi.org/10.1103/PhysRevA.98.013633

    Article  ADS  CAS  Google Scholar 

  21. Christensen, E.R., Jensen, A.S., Garrido, E.: Efimov states of three unequal bosons in non-integer dimensions. Few Body Syst. 59, 136 (2018) https://doi.org/10.1007/s00601-018-1457-9, arXiv:1809.09016 [physics.atm-clus]

  22. E. Garrido, E.R. Christensen, A.S. Jensen, Three-body continuum states and \(\text{ Efimov }\) physics in noninteger geometry. Phys. Rev. A 106, 013307 (2022). https://doi.org/10.1103/PhysRevA.106.013307

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. E. Garrido, A.S. Jensen, Efimov effect in non-integer dimensions induced by an external field. Phys. Lett. A 385, 126982 (2021). https://doi.org/10.1016/j.physleta.2020.126982

    Article  MathSciNet  CAS  Google Scholar 

  24. E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, The three-body problem with short-range interactions. Phys. Rep. 347(5), 373–459 (2001). https://doi.org/10.1016/S0370-1573(00)00107-1

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Garrido, E., Jensen, A.S.: Three identical bosons: properties in noninteger dimensions and in external fields. Phys. Rev. Res. 2(3) 033261 (2020) https://doi.org/10.1103/PhysRevResearch.2.033261, arXiv:2007.15900 [cond-mat.quant-gas]

  26. Petrov, D.S., Holzmann, M., Shlyapnikov, G.V.: Bose-Einstein condensation in Quasi-D-2 Trapped Gases. Phys. Rev. Lett. 84, 2551–2555 (2000) https://doi.org/10.1103/PhysRevLett.84.2551, arXiv:cond-mat/9909344

  27. M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Bose-einstein condensates in 1d-and 2d optical lattices. Appl. Phys. B 73, 769–772 (2001). https://doi.org/10.1007/s003400100744

    Article  ADS  CAS  Google Scholar 

  28. H. Kröger, R. Perne, Efimov effect in the four-body case. Phys. Rev. C 22, 21–27 (1980). https://doi.org/10.1103/PhysRevC.22.21

    Article  ADS  Google Scholar 

  29. S.K. Adhikari, A.C. Fonseca, Four-body \(\text{ Efimov }\) effect in a born-oppenheimer model. Phys. Rev. D 24, 416–425 (1981). https://doi.org/10.1103/PhysRevD.24.416

    Article  ADS  CAS  Google Scholar 

  30. H.W.L. Naus, J.A. Tjon, The \(\text{ Efimov }\) effect in a four-body system. Few-Body Syst. 2, 121–126 (1987). https://doi.org/10.1007/BF01080835

    Article  ADS  CAS  Google Scholar 

  31. M.T. Yamashita, D.V. Fedorov, A.S. Jensen, Universality of \(\text{ Brunnian }\) (\(n\)-body \(\text{ Borromean }\)) four- and five-body systems. Phys. Rev. A 81, 063607063607 (2010). https://doi.org/10.1103/PhysRevA.81.063607

    Article  ADS  CAS  Google Scholar 

  32. M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Four-boson scale near a \(\text{ Feshbach }\) resonance. Europhys. Lett. (EPL) 75(4), 555–561 (2006). https://doi.org/10.1209/epl/i2006-10141-6

    Article  ADS  CAS  Google Scholar 

  33. J. Stecher, Five- and six-body resonances tied to an \(\text{ Efimov }\) trimer. Phys. Rev. Lett. 107, 200402 (2011). https://doi.org/10.1103/PhysRevLett.107.200402

    Article  CAS  Google Scholar 

  34. Y. Yan, D. Blume, Energy and structural properties of \(n\)-boson clusters attached to three-body \(\text{ Efimov }\) states: Two-body zero-range interactions and the role of the three-body regulator. Phys. Rev. A 92, 033626 (2015). https://doi.org/10.1103/PhysRevA.92.033626

    Article  ADS  CAS  Google Scholar 

  35. P. Naidon, Tetramers of two heavy and two light bosons. Few-Body Syst. 59, 69–71 (2018). https://doi.org/10.1007/s00601-018-1382-y

    Article  ADS  CAS  Google Scholar 

  36. M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Scaling properties of universal tetramers. Phys. Rev. Lett. 107, 135304 (2011). https://doi.org/10.1103/PhysRevLett.107.135304

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Frederico, T., Gattobigio, M.: Universal tetramer limit cycle at the unitarity limit. Phys. Rev. A 108, 033302 (2023) https://doi.org/10.1103/PhysRevA.108.033302, arXiv:2303.14952 [physics.atm-clus]

  38. M.R. Hadizadeh, M.T. Yamashita, L. Tomio, A. Delfino, T. Frederico, Effective range from tetramer-dissociation data for cesium atoms. Phys. Rev. A 87, 013620 (2013). https://doi.org/10.1103/PhysRevA.87.013620

    Article  ADS  CAS  Google Scholar 

  39. De Paula, W., Delfino, A., Frederico, T., Tomio, L.: Limit cycles in the spectra of mass imbalanced many-boson system. J. Phys. B: At. Mol. Opt. Phys. 53(20), 205301 (2020) https://doi.org/10.1088/1361-6455/aba9e2, arXiv:1903.10321 [quant-ph]

  40. R.M. Francisco, D.S. Rosa, T. Frederico, Two heavy impurities immersed in light few-boson systems with noninteger dimensions. Phys. Rev. A 106, 063305 (2022). https://doi.org/10.1103/PhysRevA.106.063305

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. A.C. Fonseca, E.F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320, 273–288 (1979). https://doi.org/10.1016/0375-9474(79)90189-1

    Article  ADS  Google Scholar 

  42. D.S. Rosa, T. Frederico, G. Krein, M.T. Yamashita, Efimov effect in a \(d\)-dimensional \(\text{ Born-Oppenheimer }\) approach. J. Phys. B: At. Mol. Opt. Phys. 52(2), 025101 (2018). https://doi.org/10.1088/1361-6455/aaf346

    Article  ADS  CAS  Google Scholar 

  43. H.-W. Hammer, D. Lee, Causality and the effective range expansion. Ann. Phys. 325(10), 2212–2233 (2010). https://doi.org/10.1016/j.aop.2010.06.006

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. S.K. Adhikari, A. Delfino, T. Frederico, I.D. Goldman, L. Tomio, Efimov and \(\text{ Thomas }\) effects and the model dependence of three-particle observables in two and three dimensions. Phys. Rev. A 37, 3666–3673 (1988). https://doi.org/10.1103/PhysRevA.37.3666

    Article  ADS  CAS  Google Scholar 

  45. Bringas, F., Yamashita, M.T., Frederico, T.: Triatomic continuum resonances for large negative scattering lengths. Phys. Rev. A 69, 040702 (2004) https://doi.org/10.1103/PhysRevA.69.040702, arXiv:cond-mat/0312291

  46. Yamashita, M.T., Frederico, T., Delfino, A., Tomio, L.: Scaling limit of virtual states of triatomic systems. Phys. Rev. A 66, 052702 (2002) https://doi.org/10.1103/PhysRevA.66.052702, arXiv:physics/0209025

Download references

Acknowledgements

This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant Nos. 2017/05660-0 and 2019/07767-1 (T.F.), 2023/08600-9 (R.M.F.), 2023/02261-8 (D.S.R.) and 2018/25225-9 (G.K.)] and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant Nos. 306834/2022-7 (T.F.), 302105/2022-0 (M.T.Y.), and 309262/2019-4 (G.K.)].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to T. Frederico.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederico, T., Francisco, R.M., Rosa, D.S. et al. Discrete Scaling in Non-integer Dimensions. Few-Body Syst 65, 28 (2024). https://doi.org/10.1007/s00601-024-01895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01895-4

Navigation