Skip to main content
Log in

Nonlocal Thermodynamics Properties of Position-Dependent Mass Particle in Magnetic and Aharonov-Bohm Flux Fields

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this study, we have constructed a generalized momentum operator based on the notion of backward–forward coordinates characterized by a low dynamical nonlocality decaying exponentially with position. We have derived the associated Schrödinger equation and we have studied the dynamics of a particle characterized by an exponentially decreasing position-dependent mass following the arguments of von Roos. In the absence of magnetic fields, it was observed that the dynamics of the particle is similar to the harmonic oscillator with damping and its energy state is affected by nonlocality. We have also studied the dynamics of a charged particle in the presence of Morse–Coulomb potentials and external magnetic and Aharonov-Bohm flux fields. Both the energy states and the thermodynamical properties were obtained. It was observed that all these physical quantities are affected by nonlocality and that for small magnetic fields and high quantum magnetic numbers, the entropy of the system decreases with increasing temperature unless the nonlocal parameter is negative. For positive value of the nonlocal parameter, it was found that the entropy increases with temperature and tends toward an asymptotically stable value similar to an isolated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Nozari, A. Etemadi, Minimal length maximal momentum and Hilbert space representation of quantum mechanics. Phys. Rev. D 85, 104029 (2012)

    ADS  Google Scholar 

  2. S.M. Amirfakhrian, Spinless particle in a magnetic field under minimal length scenario. Z. Naturforsch. 71, 481–485 (2016)

    ADS  Google Scholar 

  3. B. Khosropour, Radiation and generalized uncertainty principle. Phys. Lett. B 785, 3–8 (2018)

    ADS  MathSciNet  Google Scholar 

  4. S.K. Moayedi, M.R. Setare, B. Khosropour, Lagrangian formulation of a magnetostatic field in the presence of a minimal length scale based on the Kempf algebra. Int. J. Mod. Phys. A 28, 1350142 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. R.A. El-Nabulsi, Generalized uncertainty principle in astrophysics from Fermi statistical physics arguments. Int. J. Theor. Phys. 59, 2083–2090 (2020)

    MathSciNet  MATH  Google Scholar 

  6. R.A. El-Nabulsi, Some implications of three generalized uncertainty principles in statistical mechanics of an ideal gas. Eur. Phys. J. Plus 135, 34 (2020)

    Google Scholar 

  7. R.A. El-Nabulsi, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. Roy. Soc. A476, 20190729 (2020)

    MathSciNet  MATH  Google Scholar 

  8. F. Scardigli, The deformation parameter of the generalized uncertainty relation. J. Phys. Conf. Ser. 1275, 012004 (2019)

    Google Scholar 

  9. M. Izadparast, S.H. Mazharimousavi, Generalized extended momentum operator. Phys. Script. 95, 075220 (2020)

    Google Scholar 

  10. R.N. Costa Filho, J.P.M. Braga, J.H.S. Lira, J.S. Andrade Jr., Extended uncertainty from first principles. Phys. Lett. B 755, 367–370 (2016)

    ADS  Google Scholar 

  11. B. Hamil, M. Merad, Dirac and Klein–Gordon oscillators on anti-de Sitter space. Eur. Phys. J. Plus 133, 174 (2018)

    ADS  MATH  Google Scholar 

  12. B. Hamil, M. Merad, T. Birkandan, Applications of the extended uncertainty principle in AdS and dS spaces. Eur. Phys. J. Plus 134, 278 (2019)

    Google Scholar 

  13. W.S. Chung, H. Hassanabadi, Quantum mechanics on (anti)-de Sitter background II: Ramsauer–Townsend effect and WKB method. Mod. Phys. Lett. A 33, 1850150 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  14. G.T. Einevoll, Operator ordering in effective mass theory for heterostructures II. strained systems. Phys. Rev. B 42, 3497 (1990)

    ADS  Google Scholar 

  15. P. Harrison, Quantum Wells, Wires and Dots (Wiley and Sons, New York, 2000)

    Google Scholar 

  16. J. Förster, A. Saenz, U. Wolff, Matrix algorithm for solving Schrödinger equations with position-dependent mass or complex optical potentials. Phys. Rev. E 86, 016701 (2012)

    ADS  Google Scholar 

  17. F.Q. Zhao, X.X. Liang, S.L. Ban, Influence of the spatially dependent effective mass on bound polarons in finite parabolic quantum wells. Eur. Phys. J. B 33, 3–8 (2003)

    ADS  Google Scholar 

  18. R.A. El-Nabulsi, Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 1–10 (2020)

    ADS  Google Scholar 

  19. R.A. El-Nabulsi, A new approach to Schrodinger equation with position-dependent mass and its implications in quantum dots and semiconductors. J. Phys. Chem. Sol. 140, 109384 (2020)

    Google Scholar 

  20. R.A. El-Nabulsi, A generalized self-consistent approach to study position-dependent mass in semiconductors organic heterostructures and crystalline impure materials. Phys. E Low Dim. Syst. Nanostruct. 134, 114295 (2020)

    Google Scholar 

  21. E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1996)

    ADS  Google Scholar 

  22. R.A. El-Nabulsi, Dynamics of pulsatile flows through microtube from nonlocality. Mech. Res. Commun. 86, 18–26 (2017)

    Google Scholar 

  23. R.A. El-Nabulsi, Complex backward-forward derivative operator in non-local-in-time Lagrangians mechanics. Qual. Theor. Dyn. Syst. 16, 223–234 (2017)

    MathSciNet  MATH  Google Scholar 

  24. R.A. El-Nabulsi, Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator. Phys. E Low-Dimensional Syst. Nanostruct. 98, 90–104 (2019)

    ADS  Google Scholar 

  25. R.A. El-Nabulsi, Nonlinear wave equations from a non-local complex backward-forward derivative operator. Waves Compl. Rand. Med. (2020). https://doi.org/10.1080/17455030.2019.1673502

    Article  Google Scholar 

  26. R.A. El-Nabulsi, Massive photons in magnetic materials from nonlocal quantization. J. Magn. Magnet. Mat. 458, 213–216 (2018)

    ADS  Google Scholar 

  27. T.F. Kamalov, Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (2013)

    Google Scholar 

  28. T.F. Kamalov, Model of extended mechanics and non-local hidden variables for quantum theory. J. Russ. Laser Res. 30, 466–471 (2009). arxiv:0909.2678

    Google Scholar 

  29. T.F. Kamalov, Quantum corrections of Newton’s law of motion. Symmetry 12, 63 (2020)

    Google Scholar 

  30. J.A.K. Suykens, Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    ADS  MATH  Google Scholar 

  31. C.M. Bender, P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model Phys. Rev. Lett. 100, 110402 (2008)

    ADS  Google Scholar 

  32. J.D. Jackson, Classical Electrodynamics (John Wiley, New York, 1975)

    MATH  Google Scholar 

  33. J.Z. Simon, Higher Derivative Expansions and Non-Locality (University of California, Santa Barbara, August 1990). Ph.D. thesis

  34. J.Z. Simon, Higher derivative Lagrangians. non-locality, problems, and solutions. Phys. Rev. D41, 3720 (1990)

    ADS  Google Scholar 

  35. S. Popescu, Dynamical quantum non-locality. Nat. Phys. 6, 151 (2010)

    Google Scholar 

  36. C. E. Pachon, L. A. Pachon, The origin of the dynamical quantum non-locality, arXiv: 1307.4144

  37. B.C. da Costa, E.P. Borges, Generalized space and linear momentum operators in quantum mechanics. J. Math. Phys. 55, 062105 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  38. X. Mei, P. Yu, The definition of universal momentum operator of quantum mechanics and the essence of micro-particle’s spin. J. Mod. Phys. 3, 451–470 (2012)

    Google Scholar 

  39. J. Li, M. Ostoja-Starzewski, Thermo-poromechanics of fractal media. Phil. Trans. R. Soc. A378, 20190288 (2020)

    MathSciNet  Google Scholar 

  40. M. Ostoja-Starzewski, Electromagnetism on anisotropic fractal media. ZAMP 64, 381–390 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  41. J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  42. M. Zubair, M.J. Mughal, Q.A. Naqvi, An exact solution of spherical wave in D-dimensional fractional space. J. Electromagn. Res. Appl. 25, 1481–1491 (2011)

    Google Scholar 

  43. M. Zubair, M.J. Mughal, Q.A. Naqvi, The wave equation and general plane wave solutions in fractional space. Prog. Electromagn. Res. Lett. 19, 137–146 (2010)

    Google Scholar 

  44. R.A. El-Nabulsi, On generalized fractional spin, fractional angular momentum, fractional momentum operators in quantum mechanics. Few Body Syst. 61, 25 (2020)

    ADS  Google Scholar 

  45. O. Von Roos, Position-dependent effective mass in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    ADS  Google Scholar 

  46. O. Mustafa, Comment on ‘Two-dimensional position-dependent massive particles in the presence of magnetic fields’. J. Phys. A Math. Theor. 52, 148001 (2019)

    ADS  MathSciNet  Google Scholar 

  47. J. Yu, S.-H. Dong, G.-H. Sun, Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential. Phys. Lett. A 322, 290–297 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  48. S.H. Dong, J.J. Pena, C. Pacheco-Garcia, J. Garcia-Ravelo, Algebraic approach to the position-dependent mass Schrödinger for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)

    ADS  MATH  Google Scholar 

  49. M. Eshghi, R. Sever, S.M. Ikhdair, Energy states of the Hulthén plus Coulomb-like potential with position-dependent mass function in external magnetic fields. Chin. Phys. B 27, 020301–5 (2018)

    ADS  Google Scholar 

  50. G. Ovando, J.J. Pena, J. Morales, J. Lopez-Bonilla, Position-dependent mass Schrödinger equation for exponential-type potentials. J. Mol. Model. 25, 289 (2019)

    Google Scholar 

  51. B. Gonul, B. Gonul, D. Tutcu, O. Ozer, Supersymmetric approach to exactly solvable systems with position-dependent effective masses. Mod. Phys. Lett. A 17, 2057–2066 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  52. J. Bosse, Lorentz atom revisited by solving Abraham–Lorentz equation of motion. Z. Naturforsch. 72, 717–731 (2017)

    ADS  Google Scholar 

  53. T.G. Philbin, Quantum dynamics of the damped harmonic oscillator. New J. Phys. 14, 083043 (2012)

    ADS  Google Scholar 

  54. D.M. Gitman, V.G. Kupriyanov, The action principle for a system of differential equations. J. Phys. A Math. Theor. 40, 10071–10081 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  55. M.C. Baldiotti, R. Fresneda, D.M. Gitman, Quantization of the damped harmonic oscillator revisited. Phys. Lett. A 375, 1630–1636 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  56. M. Eshghi, R. Server, S.M. Ikhdair, Energy states of the Hulthén plus Coulomb-like potential with position-dependent mass function in external magnetic field. Chin. Phys. B 27, 020301 (2018)

    ADS  Google Scholar 

  57. M. Eshghi, H. Mehraban, S.M. Ikhdair, Approximate energy states and thermal properties of a particle with position-dependent mass in external magnetic fields. Chin. Phys. B 26(2017), 060302 (2017)

    ADS  Google Scholar 

  58. O. Mustafa, Z. Algadhi, Position-dependent mass charged particles in magnetic and Aharonov-Bohm flux field: separability, exact and conditionally exact solvability. Eur. Phys. J. P135, 559 (2020)

    Google Scholar 

  59. O. Mustafa, Z. Algadhi, Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality. Eur. Phys. J. P134, 228 (2019)

    Google Scholar 

  60. B.J. Falaye, G.-H. Sun, R. Silva-Ortigoza, S.-H. Dong, Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields. Phys. Rev. E 93, 053201 (2016)

    ADS  Google Scholar 

  61. M. Khosravi, B. Vasaghi, K. Abbasi, G. Rezaei, Magnetic susceptibility of cylindrical quantum dot with Aharonov-Bohm flux: simultaneous effects of pressure, temperature, and magnetic flux. J. Supercond. Novel Magnet. 33, 761–768 (2020)

    Google Scholar 

  62. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987)

    Google Scholar 

  63. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing (Dover, New York, 1972)

  64. O. Mustafa, PDM creation and annihilation operators of the harmonic oscillators and the emergence of an alternative PDM-Hamiltonian. Phys. Lett. A 384, 126265 (2020)

    MathSciNet  MATH  Google Scholar 

  65. L.M. Martyushev, Entropy and entropy production: old misconceptions and breakthroughs. Entropy 15(2016), 1152–1170 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  66. R.A. El-Nabulsi, Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes. Cont. Mech. Thermodyn. 30, 889–915 (2018)

    MathSciNet  MATH  Google Scholar 

  67. B. Boyacioglu, A. Chatterjee, Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J. Appl. Phys. 112, 0 083514 (2012)

    Google Scholar 

  68. R.A. El-Nabulsi, Inverse-power potentials with positive-bounds energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments. Europ. Phys. J. P135, 693 (2020)

    Google Scholar 

  69. R.A. El-Nabulsi, Nonlocal-in-time kinetic energy description of superconductivity. Phys. C Supercond. Appl. 577, 1353716 (2020)

    ADS  Google Scholar 

  70. O. Mustafa, S. Habib Mazharimousavi, Ordering ambiguity revisited via position dependent mass pseudo-momentum operators. Int. J. Theor. Phys. 46, 1786–1796 (2007)

    MathSciNet  MATH  Google Scholar 

  71. O. Mustafa, Comment on ’Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator’. J. Phys. A Math. Theor. 46, 368001 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for his valuable comments which have improved this study.

Funding

The author received no direct funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Nonlocal Thermodynamics Properties of Position-Dependent Mass Particle in Magnetic and Aharonov-Bohm Flux Fields. Few-Body Syst 61, 37 (2020). https://doi.org/10.1007/s00601-020-01569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01569-x

Navigation