Skip to main content
Log in

Roles of the Color Antisymmetric Ghost Propagator in the Infrared QCD

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region has strong fluctuation whose modulus is compatible with that of the color diagonal ghost propagator. After presenting lattice simulation of configurations produced with Kogut–Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost–gluon–ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson–Schwinger equation analysis suggests the ghost dressing function G(0) = finite and no infrared enhancement or α G  = 0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as \({\langle c\bar c \rangle _r =-\frac{G(q^2)}{q^2}}\) with \({G(q^2)\propto q^{-2\alpha_G}}\) with α G = 0.5, if the fixed point scenario is valid. I interpret the α G  = 0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is α D  = − 0.5 and that of MILC is about − 0.7. A possible interpretation of the origin of the fluctuation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furui S., Nakajima H.: Phys. Rev. D 69, 074505 (2004)

    Article  ADS  Google Scholar 

  2. Furui S., Nakajima H.: Phys. Rev. D 70, 094504 (2004)

    Article  ADS  Google Scholar 

  3. Furui S., Nakajima H.: Few Body Syst. 40, 101 (2006)

    Article  ADS  Google Scholar 

  4. Furui S., Nakajima H.: Phys. Rev. D 73, 094506 (2006) arXiv:hep-lat/0602027

    Article  ADS  Google Scholar 

  5. Furui S., Nakajima H.: Phys. Rev. D 76, 054509 (2007) hep-lat/0612009

    Article  ADS  Google Scholar 

  6. Furui S., Nakajima H.: Br. J. Phys. 37, 186 (2006)

    Google Scholar 

  7. Furui S., Nakajima H.: Phys. Rev. D 73, 074503 (2006)

    Article  ADS  Google Scholar 

  8. Zwanziger D.: Phys. Rev. D 65, 094039 (2002)

    Article  ADS  Google Scholar 

  9. Cucchieri, A., Mendes, T.: PoS (Lattice 2007) 297. arXiv:0710.0412[hep-lat]

  10. von Smekal L., Hauck A., Alkofer R.: Ann. Phys. 267, 1 (1998)

    Article  MATH  ADS  Google Scholar 

  11. Alkofer R., von Smekal L.: Phys. Rep. 353, 281 (2001) hep-ph/0007355

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Zwanziger D.: Nucl. Phys. B 364, 127 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zwanziger D.: Nucl. Phys. B 412, 657 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Zwanziger D.: Braz. J. Phys. 37, 127 (2007) arXiv:hep-ph/0610021 v2

    Article  Google Scholar 

  15. Gribov V.N.: Nucl. Phys. B 139, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bloch J.C.R.: Few Body Syst. 33, 111 (2003)

    Article  ADS  Google Scholar 

  17. Fischer C.S.: J. Phys. G 32, R253 (2006) arXiv:hep-ph/0606173

    Article  ADS  Google Scholar 

  18. Boucaud, Ph., Leroy, J.-P., Le Yaouanc, A., Micheli, J., Pène, O., Rodriguez-Quintero, J.: arXiv:0801.2721[hep-ph]

  19. Dudal D., Sorella S.P., Vandrsickel N., Verschelde H.: Phys. Rev. 078, 065047 (2008) arXiv:0711.4496[hep-th]

    Google Scholar 

  20. Alkofer, R., Huber, M., Schwenzer, K.: arXiv:0801.2762[hep-th]

  21. Furui S.: Prog. Theor. Phys. 119, 149 (2008)

    Article  MATH  ADS  Google Scholar 

  22. Dudal D., Sobreiro R.F., Sorella S.P., Verschelde H.: Phys. Rev. D 72, 014016 (2005). hep-th/0502183

    Article  ADS  Google Scholar 

  23. Cucchieri A., Mendes T., Mihara A.: Phys. Rev. D 72, 094505 (2005)

    Article  ADS  Google Scholar 

  24. Cucchieri, A., Mendes, T.: arXiv:hep-ph/0605224

  25. Deur A. et al.: Phys. Lett. B 650, 244 (2007)

    Article  ADS  Google Scholar 

  26. Brodsky S.J., Lu H.J.: Phys. Rev. D 51, 3652 (1995)

    Article  ADS  Google Scholar 

  27. Brodsky S.J., Menke S., Merino C., Rathsman J.: Phys. Rev. D 67, 055008 (2003)

    Article  ADS  Google Scholar 

  28. Furui, S., Nakajima, H.: PoS (Lattice 2007)301(2007). arXiv:0708.1421[hep-lat]

  29. Bernard C. et al.: Phys. Rev. D 54, 4585 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Bernard C. et al.: Phys. Rev. D 64, 054506 (2001)

    Article  ADS  Google Scholar 

  31. Allton C. et al.: Phys. Rev. D 76, 014504 (2007) arXiv:hep-lat/0701013

    Article  ADS  Google Scholar 

  32. Zavialov O.I.: Renormalized Quantum Field Theory. Kluwer, Dordrecht (1990)

    MATH  Google Scholar 

  33. Hüffel H., Kelnhofer G.: Phys. Lett. B 472, 101 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Hüffel H., Kelnhofer G.: Ann. Phys. 270, 231 (1998)

    Article  MATH  ADS  Google Scholar 

  35. Zinn-Justin J.: Quantum Field Theory and Critical Phenomena, 3rd Edn. Oxford Science Publications, Oxford (2001)

    Google Scholar 

  36. ’t Hooft G.: Nucl. Phys. B 33, 173 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  37. Schleifenbaum W., Maas A., Wambach J., Alkofer R.: Phys. Rev. D 72, 014017 (2005)

    Article  ADS  Google Scholar 

  38. Cucchieri A., Maas A., Mendes T.: Phys. Rev. D 77, 094510 (2008)

    Article  ADS  Google Scholar 

  39. Taylor J.C.: Nucl. Phys. B 33, 436 (1971)

    Article  ADS  Google Scholar 

  40. Kugo T., Ojima I.: Prog. Theor. Phys. Suppl. 66, 1 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kugo, T.: arXiv:hep-th/9511033

  42. Fischer C.S., Zwanziger D.: Phys. Rev. D 72, 054005 (2005)

    Article  ADS  Google Scholar 

  43. Appelquist T., Carazzone J.: Phys. Rev. D 11, 2856 (1975)

    Article  ADS  Google Scholar 

  44. Mandelstam S.: Phys. Rev. D 20, 3223 (1979)

    Article  ADS  Google Scholar 

  45. Boucaud Ph. et al.: JHEP 0304, 005 (2003)

    Article  ADS  Google Scholar 

  46. Furui, S.: PoS (Lattice 2008)130. arXiv:0808.1796[hep-lat]

  47. Furui, S.: arXiv:0801.0325[hep-lat]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadataka Furui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furui, S. Roles of the Color Antisymmetric Ghost Propagator in the Infrared QCD. Few-Body Syst 46, 63–72 (2009). https://doi.org/10.1007/s00601-008-0005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-008-0005-4

Keywords

Navigation