Skip to main content

Advertisement

Log in

Placental expressions and serum levels of adiponectin, visfatin, and omentin in GDM

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Adiponectin, visfatin, and omentin have been shown to be associated with insulin sensitivity and might have a role in the pathophysiology of gestational diabetes mellitus (GDM). This study aimed to (1) compare adiponectin, visfatin, and omentin mRNA expressions in placenta and their serum levels between normal pregnancy (NP) and GDM class A1 (GDMA1) pregnancy and (2) determine correlations between placental gene expressions as well as serum levels with maternal and neonatal clinical parameters in all, NP, and GDM subjects.

Methods

NP subjects (n = 37), who had normal medical history during their pregnancies without diagnosis of any abnormalities and GDMA1 subjects (n = 37), who were diagnosed since they had antenatal care, were recruited when they were in labor with a gestational age of at least 34 weeks. Clinical parameters and serum adiponectin, visfatin, and omentin levels were measured in the delivery room.

Results

GDMA1 subjects had higher serum visfatin and plasma glucose levels, but lower serum omentin levels (p  < 0.05 all) compared to controls, with comparable levels of placental adiponectin, visfatin, and omentin expressions, plasma insulin, and indices of insulin sensitivity and insulin resistance. Serum visfatin was negatively correlated with neonatal weight and length in the GDM group (p  < 0.05 all). Serum omentin was negatively correlated with pre-pregnancy body mass index and waist circumference only in the NP group (p  < 0.05 all). Serum adiponectin was negatively correlated with maternal age and HOMA-IR in the NP group (p  < 0.05 all) and with placental weight and serum omentin in the GDM group (p  < 0.05 all).

Conclusions

In conclusion, in GDMA1, increased serum visfatin, which has insulin-mimetic effect, might be associated with a compensatory mechanism that improves the impaired insulin function. Decreased serum omentin in GDMA1, which is normally found in visceral obesity, might lead to insulin resistance and contribute to the pathophysiology of GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kane SC, Costa Fda S, Brennecke S (2014) First trimester biomarkers in the prediction of later pregnancy complications. Biomed Res Int 2014:807196

    Article  PubMed  PubMed Central  Google Scholar 

  2. De Souza LR, Berger H, Retnakaran R et al (2016) First-trimester maternal abdominal adiposity predicts dysglycemia and gestational diabetes mellitus in midpregnancy. Diabetes Care 39(1):61–64

    Article  CAS  PubMed  Google Scholar 

  3. Bluher M (2012) Clinical relevance of adipokines. Diabetes Metab J. 36(5):317–327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270(45):26746–26749

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Tan B, Karteris E et al (2006) Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines. Diabetologia 49(6):1292–1302

    Article  CAS  PubMed  Google Scholar 

  6. Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946

    Article  CAS  PubMed  Google Scholar 

  7. Sitticharoon C, Nway NC, Chatree S, Churintaraphan M, Boonpuan P, Maikaew P (2014) Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides 62:164–175

    Article  CAS  PubMed  Google Scholar 

  8. Derosa G, Fogari E, D’Angelo A et al (2013) Adipocytokine levels in obese and non-obese subjects: an observational study. Inflammation. 36(4):914–920. https://doi.org/10.1007/s10753-013-9620-4

    Article  CAS  PubMed  Google Scholar 

  9. Weyer C, Funahashi T, Tanaka S et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935

    Article  CAS  PubMed  Google Scholar 

  10. Park KG, Park KS, Kim MJ et al (2004) Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res Clin Pract 63(2):135–142

    Article  CAS  PubMed  Google Scholar 

  11. Catalano PM, Hoegh M, Minium J et al (2006) Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. Diabetologia 49(7):1677–1685 Epub 2006 May 11

    Article  CAS  PubMed  Google Scholar 

  12. Lowe LP, Metzger BE, Lowe WL Jr, Dyer AR, McDade TW, McIntyre HD (2010) Inflammatory mediators and glucose in pregnancy: results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J Clin Endocrinol Metab 95(12):5427–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matuszek B, Burska A, Leszczynska-Gorzelak B, Donica H, Nowakowski A (2013) Comparative analysis of adiponectin isoform distribution in pregnant women with gestational diabetes mellitus and after delivery. Acta Obstet Gynecol Scand 92(8):951–959

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Zhao YH, Chen YP et al (2014) Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: a systematic review and meta-analysis. Sci World J 2014:926932

    Google Scholar 

  15. Pala HG, Ozalp Y, Yener AS, Gerceklioglu G, Uysal S, Onvural A (2015) Adiponectin levels in gestational diabetes mellitus and in pregnant women without glucose intolerance. Adv Clin Exp Med. 24(1):85–92. https://doi.org/10.17219/acem/38141

    Article  PubMed  Google Scholar 

  16. Adeghate E (2008) Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem 15(18):1851–1862

    Article  CAS  PubMed  Google Scholar 

  17. Morgan SA, Bringolf JB, Seidel ER (2008) Visfatin expression is elevated in normal human pregnancy. Peptides 29(8):1382–1389. https://doi.org/10.1016/j.peptides.2008.04.010 Epub Apr 26

    Article  CAS  PubMed  Google Scholar 

  18. Chan TF, Chen YL, Lee CH et al (2006) Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J Soc Gynecol Investig 13(5):364–367

    Article  CAS  PubMed  Google Scholar 

  19. Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708):426–430 Epub 2004 Dec 16

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Bermejo A, Chico-Julia B, Fernandez-Balsells M et al (2006) Serum visfatin increases with progressive beta-cell deterioration. Diabetes 55(10):2871–2875

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira AF, Rezende JC, Vaikousi E, Akolekar R, Nicolaides KH (2011) Maternal serum visfatin at 11-13 weeks of gestation in gestational diabetes mellitus. Clin Chem 57(4):609–613. https://doi.org/10.1373/clinchem.2010.159806 Epub 2011 Feb 15

    Article  CAS  PubMed  Google Scholar 

  22. Zahorska-Markiewicz B, Olszanecka-Glinianowicz M, Janowska J et al (2007) Serum concentration of visfatin in obese women. Metabolism. 56(8):1131–1134

    Article  CAS  PubMed  Google Scholar 

  23. Sitticharoon C, Nway NC, Chatree S, Churintaraphan M, Boonpuan P, Maikaew P (2014) Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides 62:164–175

    Article  CAS  PubMed  Google Scholar 

  24. Derosa G, Fogari E, D’Angelo A et al (2013) Adipocytokine levels in obese and non-obese subjects: an observational study. Inflammation. 36:914–920

    Article  CAS  PubMed  Google Scholar 

  25. Pagano C, Pilon C, Olivieri M et al (2006) Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab 91(8):3165–3170

    Article  CAS  PubMed  Google Scholar 

  26. Krzyzanowska K, Krugluger W, Mittermayer F et al (2006) Increased visfatin concentrations in women with gestational diabetes mellitus. Clin Sci (Lond). 110(5):605–609

    Article  CAS  PubMed  Google Scholar 

  27. Telejko B, Kuzmicki M, Zonenberg A et al (2009) Visfatin in gestational diabetes: serum level and mRNA expression in fat and placental tissue. Diabetes Res Clin Pract 84(1):68–75. https://doi.org/10.1016/j.diabres.2008.12.017 Epub 9 Jan 30

    Article  CAS  PubMed  Google Scholar 

  28. Tan BK, Adya R, Randeva HS (2010) Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc Med 20(5):143–148. https://doi.org/10.1016/j.tcm.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji S, Uehori J, Matsumoto M et al (2001) Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem 276(26):23456–23463

    Article  CAS  PubMed  Google Scholar 

  30. Maenhaut N, Van de Voorde J (2011) Regulation of vascular tone by adipocytes. BMC Med 9:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan BK, Adya R, Farhatullah S et al (2008) Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 57(4):801–808

    Article  CAS  PubMed  Google Scholar 

  32. de Souza Batista CM, Yang RZ, Lee MJ et al (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56(6):1655–1661 Epub 2007 Feb 28

    Article  CAS  PubMed  Google Scholar 

  33. Barker G, Lim R, Georgiou HM, Lappas M (2012) Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS ONE 7(8):e42943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewandowski K, Nadel I, Lewinski A et al (2010) Positive correlation between serum omentin and thrombospondin-1 in gestational diabetes despite lack of correlation with insulin resistance indices. Ginekol Pol 81(12):907–912

    PubMed  Google Scholar 

  35. Lappas M, Yee K, Permezel M, Rice GE (2005) Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J Endocrinol 186(3):457–465

    Article  CAS  PubMed  Google Scholar 

  36. White P (1949) Pregnancy complicating diabetes. Am J Med 7(5):609–616

    Article  CAS  PubMed  Google Scholar 

  37. Abell SK, De Courten B, Boyle JA, Teede HJ (2015) Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci 16(6):13442–13473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sunsaneevithayakul P, Boriboohirunsarn D, Sutanthavibul A et al (2003) Risk factor-based selective screening program for gestational diabetes mellitus in Siriraj Hospital: result from clinical practice guideline. J Med Assoc Thail 86(8):708–714

    Google Scholar 

  39. Cleal JK, Day P, Hanson MA, Lewis RM (2009) Measurement of housekeeping genes in human placenta. Placenta 30(11):1002–1003

    Article  CAS  PubMed  Google Scholar 

  40. Coskun A, Ozkaya M, Kiran G, Kilinc M, Arikan DC (2010) Plasma visfatin levels in pregnant women with normal glucose tolerance, gestational diabetes and pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 23(9):1014–1018

    Article  CAS  PubMed  Google Scholar 

  41. Gabbe SG (1981) Diabetes mellitus in pregnancy: have all the problems been solved? Am J Med 70(3):613–618

    Article  CAS  PubMed  Google Scholar 

  42. Shokry E, Marchioro L, Uhl O et al (2019) Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol 56(4):421–430

    Article  PubMed  Google Scholar 

  43. Haider DG, Schaller G, Kapiotis S, Maier C, Luger A, Wolzt M (2006) The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 49(8):1909–1914

    Article  CAS  PubMed  Google Scholar 

  44. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B (2006) Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab 91(4):1578–1581

    Article  CAS  PubMed  Google Scholar 

  45. Szamatowicz J, Kuzmicki M, Telejko B et al (2009) Serum visfatin concentration is elevated in pregnant women irrespectively of the presence of gestational diabetes. Ginekol Pol 80(1):14–18

    PubMed  Google Scholar 

  46. Akturk M, Altinova AE, Mert I et al (2008) Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. J Endocrinol Invest 31(7):610–613

    Article  CAS  PubMed  Google Scholar 

  47. Nway NC, Sitticharoon C, Chatree S, Maikaew P (2016) Correlations between the expression of the insulin sensitizing hormones, adiponectin, visfatin, and omentin, and the appetite regulatory hormone, neuropeptide Y and its receptors in subcutaneous and visceral adipose tissues. Obes Res Clin Pract. 10(3):256–263

    Article  PubMed  Google Scholar 

  48. Bergmann K, Sypniewska G (2013) Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clin Chem Lab Med. 51(1):177–185

    Article  CAS  PubMed  Google Scholar 

  49. Kabir M, Catalano KJ, Ananthnarayan S et al (2005) Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 288(2):E454–E461

    Article  CAS  PubMed  Google Scholar 

  50. Simons PJ, van den Pangaart PS, Aerts JM, Boon L (2007) Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J Endocrinol 192(2):289–299

    Article  CAS  PubMed  Google Scholar 

  51. Mohlig M, Wegewitz U, Osterhoff M et al (2002) Insulin decreases human adiponectin plasma levels. Horm Metab Res 34(11–12):655–658

    Article  CAS  PubMed  Google Scholar 

  52. Hivert M-F, Sun Q, Shrader P, Mantzoros CS, Meigs JB, Hu FB (2011) Higher adiponectin levels predict greater weight gain in healthy women in the Nurses’ Health Study. Obesity (Silver Spring, Md). 19(2):409–415

    Article  CAS  Google Scholar 

  53. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132(6):2169–2180

    Article  CAS  PubMed  Google Scholar 

  54. Simons PJ, van den Pangaart PS, Aerts JM, Boon L (2007) Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J Endocrinol 192(2):289–299

    Article  CAS  PubMed  Google Scholar 

  55. Zheng J, Xiao X, Zhang Q et al (2014) Correlation of high-molecular-weight adiponectin and leptin concentrations with anthropometric parameters and insulin sensitivity in newborns. Int J Endocrinol 2014:435376

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the nurses and residents of the Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, for subject recruitment, data, blood, and placenta collection. We thank Pailin Maikaew for the management of financial documents. This work was supported by the Faculty of Medicine Siriraj Hospital Research Fund (Grant Number [IO] R015934008). X. Souvannavong-Vilivong and R. Klinjampa were supported by the Siriraj Graduate Scholarship, Faculty of Medicine Siriraj Hospital, Mahidol University. C. Sitticharoon was supported by the Chalermprakiat Grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies and analysis of the data and review of the manuscript; XS-V, CS, RK, CS, and IK conducted the experiments. XS-V and CS wrote the manuscript.

Corresponding author

Correspondence to Chantacha Sitticharoon.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

The study has been approved by the the Siriraj Institutional Review Board (COA no. Si.545/2015) of the Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand and has been performed in accordance with the Declaration of Helsinki.

Informed consent

Written informed consents were obtained from all subjects prior to the study.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souvannavong-Vilivong, X., Sitticharoon, C., Klinjampa, R. et al. Placental expressions and serum levels of adiponectin, visfatin, and omentin in GDM. Acta Diabetol 56, 1121–1131 (2019). https://doi.org/10.1007/s00592-019-01355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01355-0

Keywords

Navigation