Skip to main content

Advertisement

Log in

Metformin attenuates the TLR4 inflammatory pathway in skeletal muscle of diabetic rats

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Inflammation induced by hyperglycemia triggers the toll-like receptor (TLR) pathway into cells. Our hypothesis was that metformin treatment attenuates the TLR signaling pathways triggered by inflammation in skeletal muscle of hypoinsulinemic/hyperglycemic STZ-induced rats. Thus, we examined TLR signaling under hypoinsulinemia and hyperglycemia conditions and its correlation with insulin resistance in muscle of diabetic rats treated with metformin.

Methods

Ten-day diabetic rats were submitted to 7 days of saline (D group) or metformin (500 mg/kg once per day) (D + M group). The skeletal muscle was collected before the insulin tolerance test. Then, Western blotting analysis of skeletal muscle supernatant was probed with TLR4, TLR2, NF-κB, IκB, p-AMPK and p-JNK. TNF-α and CXCL1/KC content was analyzed by ELISA.

Results

Metformin treatment increased whole-body insulin sensitivity. This regulation was accompanied by a parallel change of p-AMPK and by an inverse regulation of TLR4 and NF-κB contents in the soleus muscle (r = 0.7229, r = −0.8344 and r = −0.7289, respectively, Pearson correlation; p < 0.05). Metformin treatment increased IκB content when compared to D rats. In addition, metformin treatment decreased p-JNK independently of TLR2 signal in diabetic rats.

Conclusion

In summary, the results indicate a relationship between muscular TLR4, p-AMPK and NF-κB content and insulin sensitivity. The study also highlights that in situations of insulin resistance, such as in diabetic subjects, metformin treatment may prevent attenuation of activation of the inflammatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  2. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    Article  PubMed  Google Scholar 

  3. Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945

    Article  CAS  PubMed  Google Scholar 

  4. Kim JJ, Sears DD (2010) TLR4 and insulin resistance. Gastroenterol Res Pract 2010:1–11, Art ID 212563. doi:10.1155/2010/212563

  5. Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M et al (2013) Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci USA 110:12780–12785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Devaraj S, Jialal I, Yun JM, Bremer A (2011) Demonstration of increased toll-like receptor 2 and toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism 60:256–259

    Article  CAS  PubMed  Google Scholar 

  7. Zipris D (2010) Toll-like receptors and type 1 diabetes. Adv Exp Med Biol 654:585–610

    Article  CAS  PubMed  Google Scholar 

  8. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I (2008) Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93:578–583

    Article  CAS  PubMed  Google Scholar 

  9. Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P, Jenkinson CP et al (2008) Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes. 57:2595–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeuchi O, Akira S (2001) Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 1:625–635

    Article  CAS  PubMed  Google Scholar 

  11. Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW et al (2011) Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 226:1573–1582

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Wu Y, Ojcius DM, Yang XF, Zhang C, Ding S et al (2012) Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-kappaB signaling pathways. PLoS ONE 7:e42266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  14. Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  CAS  PubMed  Google Scholar 

  15. Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyd JH, Divangahi M, Yahiaoui L, Gvozdic D, Qureshi S, Petrof BJ (2006) Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-kappaB and calcineurin. Infect Immun 74:6829–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nedachi T, Hatakeyama H, Kono T, Sato M, Kanzaki M (2009) Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Am J Physiol Endocrinol Metab 297:E866–E878

    Article  CAS  PubMed  Google Scholar 

  18. Poletto AC, Furuya DT, David-Silva A, Ebersbach-Silva P, Santos CL, Correa-Giannella ML et al (2015) Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Mol Cell Endocrinol 401:65–72

    Article  CAS  PubMed  Google Scholar 

  19. Konner AC, Bruning JC (2011) Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab 22:16–23

    Article  PubMed  Google Scholar 

  20. Okamoto MM, Anhe GF, Sabino-Silva R, Marques MF, Freitas HS, Mori RC et al (2011) Intensive insulin treatment induces insulin resistance in diabetic rats by impairing glucose metabolism-related mechanisms in muscle and liver. J Endocrinol 211:55–64

    Article  CAS  PubMed  Google Scholar 

  21. de Laat MA, Gruntmeir KJ, Pollitt CC, McGowan CM, Sillence MN, Lacombe VA (2014) Hyperinsulinemia down-regulates TLR4 expression in the mammalian heart. Front Endocrinol (Lausanne) 5:120

    Google Scholar 

  22. Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6:a009191. doi:10.1101/cshperspect.a009191

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kristensen JM, Treebak JT, Schjerling P, Goodyear L, Wojtaszewski JF (2014) Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Endocrinol Metab 306:E1099–E1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saisho Y (2015) Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 15:196–205

    Article  CAS  PubMed  Google Scholar 

  25. Strack T (2008) Metformin: a review. Drugs Today (Barc) 44:303–314

    Article  CAS  Google Scholar 

  26. Oshima R, Yamada M, Kurogi E, Ogino Y, Serizawa Y, Tsuda S et al (2015) Evidence for organic cation transporter-mediated metformin transport and 5′-adenosine monophosphate-activated protein kinase activation in rat skeletal muscles. Metabolism 64:296–304

    Article  CAS  PubMed  Google Scholar 

  27. Soraya H, Farajnia S, Khani S, Rameshrad M, Khorrami A, Banani A et al (2012) Short-term treatment with metformin suppresses toll like receptors (TLRs) activity in isoproterenol-induced myocardial infarction in rat: are AMPK and TLRs connected? Int Immunopharmacol 14:785–791

    Article  CAS  PubMed  Google Scholar 

  28. Soraya H, Clanachan AS, Rameshrad M, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2014) Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur J Pharmacol 737:77–84

    Article  CAS  PubMed  Google Scholar 

  29. Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110:972–977

    Article  CAS  PubMed  Google Scholar 

  30. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3 K-dependent AMPK phosphorylation. Int J Cardiol 134:169–175

    Article  PubMed  Google Scholar 

  31. Steinberg GR, Michell BJ, van Denderen BJ, Watt MJ, Carey AL, Fam BC et al (2006) Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab 4:465–474

    Article  CAS  PubMed  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–599

    Article  CAS  PubMed  Google Scholar 

  34. Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24:145–149

    CAS  PubMed  Google Scholar 

  35. Chen L, Chen R, Wang H, Liang F (2015) Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol 2015:508409

    PubMed  PubMed Central  Google Scholar 

  36. Hutton MJ, Soukhatcheva G, Johnson JD, Verchere CB (2010) Role of the TLR signaling molecule TRIF in beta-cell function and glucose homeostasis. Islets 2:104–111

    Article  PubMed  Google Scholar 

  37. Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188

    Article  CAS  PubMed  Google Scholar 

  38. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  39. Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cejkova P, Nemeckova I, Broz J, Cerna M (2015) TLR2 and TLR4 expression on CD14 and CD14 monocyte subtypes in adult-onset autoimmune diabetes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160:76. doi:10.5507/bp.2015.016.17

    PubMed  Google Scholar 

  41. Gu J, Ye S, Wang S, Sun W, Hu Y (2014) Metformin inhibits nuclear factor-kappaB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro. Chin Med J (Engl) 127:1755–1760

    CAS  Google Scholar 

  42. Giannarelli R, Aragona M, Coppelli A, Del Prato S (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab 29:6S28–6S35

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Cheng Z, Cristofaro V, Li J, Xiao X, Gomez P et al (2012) Inhibition of TNF-alpha improves the bladder dysfunction that is associated with type 2 diabetes. Diabetes 61:2134–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta S, Bi R, Kim C, Chiplunkar S, Yel L, Gollapudi S (2005) Role of NF-kappaB signaling pathway in increased tumor necrosis factor-alpha-induced apoptosis of lymphocytes in aged humans. Cell Death Differ 12:177–183

    Article  CAS  PubMed  Google Scholar 

  45. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    Article  CAS  PubMed  Google Scholar 

  46. Vieira SM, Lemos HP, Grespan R, Napimoga MH, Dal-Secco D, Freitas A et al (2009) A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. Br J Pharmacol 158:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin W, Ding M, Xue J, Leng W (2013) The role of TLR2/JNK/NF-kappaB pathway in amyloid beta peptide-induced inflammatory response in mouse NG108-15 neural cells. Int Immunopharmacol 17:880–884

    Article  CAS  PubMed  Google Scholar 

  50. Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40:85–89

    Article  CAS  PubMed  Google Scholar 

  51. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70

    Article  CAS  PubMed  Google Scholar 

  52. Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11:212–217

    Article  CAS  PubMed  Google Scholar 

  53. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054

    Article  CAS  PubMed  Google Scholar 

  54. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  CAS  PubMed  Google Scholar 

  55. Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE (2004) Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem 279:35298–35305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG for its support. L.G.P., D.D.V., and L.N.B. were recipients of Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES and FAPEMIG fellowships. F.S.E. is a grant recipient of CNPq.

Author information

Authors and Affiliations

Authors

Contributions

LGP, RRT, RSS and FSE conceived and designed the experiments. LGP, RRT, DDV, LNB, SRD and FAA performed the experiments. LGP, RRT, DDV, FAA, RSS and FSE analyzed the data. LGP, LNB, RRT and RSS wrote the paper. FSE supervised the entire project.

Corresponding author

Correspondence to Foued Salmen Espindola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any study with human. All procedures performed in this study involving animals were in accordance with the ethical standards of Ethics Committee of Federal University of Uberlândia.

Informed consent

None.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, L.G., Teixeira, R.R., Vilela, D.D. et al. Metformin attenuates the TLR4 inflammatory pathway in skeletal muscle of diabetic rats. Acta Diabetol 54, 943–951 (2017). https://doi.org/10.1007/s00592-017-1027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1027-5

Keywords

Navigation