Skip to main content

Advertisement

Log in

Cardiovascular complications of type 1 diabetes: update on the renal link

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Despite recent findings of increased life expectancy among individuals with type 1 diabetes, mortality remains greatly increased compared to the general population. As this is largely the result of cardiovascular and renal complications, we aimed to review recent findings surrounding these diseases in type 1 diabetes.

Methods

We reviewed published findings concerning the cardiovascular complications of type 1 diabetes, with a particular focus on links with renal disease.

Results

The cardiovascular and renal complications of type 1 diabetes share many features including insulin resistance, oxidative damage, and genetic associations with the Haptoglobin genotype, and both are strongly affected by glycemic control.

Conclusions

Although current knowledge on predictors of type 1 diabetes cardiovascular and renal complications has increased, further investigation is required to understand the mechanisms leading to cardio-renal complications in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Secrest AM, Becker DJ, Kelsey SF, Laporte RE, Orchard TJ (2010) All-cause mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes Care 33:2573–2579

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morgan E, Cardwell CR, Black CJ, McCance DR, Patterson CC (2015) Excess mortality in Type 1 diabetes diagnosed in childhood and adolescence: a systematic review of population-based cohorts. Acta Diabetol 52:801–807

    Article  CAS  PubMed  Google Scholar 

  3. Miller R, Secrest A, Sharma R, Songer T, Orchard T (2012) Improvements in the life expectancy of type 1 diabetes: the Pittsburgh epidemiology of diabetes complications study cohort. Diabetes 61:2987–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Livingstone SJ, Levin D, Looker HC et al (2015) Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008–2010. JAMA 313:37–44. doi:10.1001/jama.2014.16425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eeg-Olfsson K, Cederholm J, Nilsson PM et al (2010) Glycemic control and cardiovascular disease in 7,454 patients with type 1 diabetes: an observational study from the Swedish National Diabetes Register(NDR). Diabetes Care 33:1640–1646

    Article  Google Scholar 

  6. Huxley RR, Peters SA, Mishra GD, Woodward M (2015) Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 3:198–206

    Article  PubMed  Google Scholar 

  7. Miller RG, Mahajan HD, Costacou T, Sekikawa A, Anderson SJ, Orchard TJ (2016) A contemporary estimate of total mortality and cardiovascular disease risk in young adults with type 1 diabetes: the Pittsburgh epidemiology of diabetes complications study. Diabetes Care 39:2296–2303

    Article  PubMed  Google Scholar 

  8. Menke A, Orchard TJ, Imperatore G, Bullard KM, Mayer-Davis E, Cowie CC (2013) Research letter: the prevalence of type 1 diabetes in the United States. Epidemiology 24:773–774

    Article  PubMed  PubMed Central  Google Scholar 

  9. Secrest AM, Becker DJ, Kelsey SF, LaPorte RE, Orchard TJ (2010) Cause-specific mortality trends in a large population-based cohort with long-standing childhood-onset type 1 diabetes. Diabetes 59:3216–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Groop PH, Thomas MC, Moran JL et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orchard TJ, Secrest AM, Miller RG, Costacou T (2010) In the absence of renal disease, 20-year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetologia 53:2312–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1:1430–1432

    Article  CAS  PubMed  Google Scholar 

  13. Gerstein HC, Mann JF, Yi Q et al (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286:421–426

    Article  CAS  PubMed  Google Scholar 

  14. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B et al (2004) Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 110:32–35

    Article  CAS  PubMed  Google Scholar 

  15. Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G (1993) Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 342:883–887

    Article  CAS  PubMed  Google Scholar 

  16. Kshirsagar AV, Bomback AS, Bang H et al (2008) Association of C-reactive protein and microalbuminuria (from the National Health and Nutrition Examination Surveys, 1999 to 2004). Am J Cardiol 101:401–406. doi:10.1016/j.amjcard.2007.08.041

    Article  CAS  PubMed  Google Scholar 

  17. Pedrinelli R, Giampietro O, Carmassi F et al (1994) Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344:14–18

    Article  CAS  PubMed  Google Scholar 

  18. Whaley-Connell AT, Chowdhury NA, Hayden MR et al (2006) Oxidative stress and glomerular filtration barrier injury: role of the renin-angiotensin system in the Ren2 transgenic rat. Am J Physiol Renal Physiol 291:F1308–F1314. doi:10.1152/ajprenal.00167.2006

    Article  CAS  PubMed  Google Scholar 

  19. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage: the Steno hypothesis. Diabetologia 32:219–226

    Article  CAS  PubMed  Google Scholar 

  20. Jensen T, Borch-Johnsen K, Kofoed-Enevoldsen A, Deckert T (1987) Coronary heart disease in young type 1 (insulin-dependent) diabetic patients with and without diabetic nephropathy: incidence and risk factors. Diabetologia 30:144–148

    Article  CAS  PubMed  Google Scholar 

  21. Orchard TJ, Chang Y, Ferrell R, Petro N, Ellis D (2002) Nephropathy in T1D: a manifestation of insulin resistance and multiple genetic susceptibilities? further evidence from the Pittsburgh EDC study. Kidney Int 62:963–970

    Article  CAS  PubMed  Google Scholar 

  22. Orchard TJ, Costacou T (2010) When are type 1 diabetic patients at risk for cardiovascular disease? Curr Diabetes Rep 10:48–54

    Article  Google Scholar 

  23. Pambianco G, Costacou T, Ellis D et al (2006) The 30-year natural history of type 1 diabetes complications: the Pittsburgh EDC study experience. Diabetes 55:1463–1469

    Article  CAS  PubMed  Google Scholar 

  24. Orchard TJ, Olson JC, Williams K et al (2003) Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: ten year follow-up data from the Pittsburgh EDC study. Diabetes Care 26:1374–1379

    Article  PubMed  Google Scholar 

  25. Klein BE, Klein R, McBride PE et al (2004) Cardiovascular disease, mortality, and retinal microvascular characteristics in type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Arch Intern Med 164:1917–1924

    Article  PubMed  Google Scholar 

  26. Soedamah-Muthu SS, Chaturvedi N, Toeller M et al (2004) Risk factors for coronary heart disease in type 1 diabetic patients in Europe: The EURODIAB prospective complications study. Diabetes Care 27:530–537

    Article  PubMed  Google Scholar 

  27. Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653

    Article  PubMed  Google Scholar 

  28. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group (2016) Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care 39:686–693. doi:10.2337/dc15-1990

    Article  Google Scholar 

  29. Lane PH, Steffes MW, Mauer SM (1992) Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes 41(5):581–586

    Article  CAS  PubMed  Google Scholar 

  30. Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040

    Article  CAS  PubMed  Google Scholar 

  31. Costacou T, Ellis D, Fried L, Orchard TJ (2007) Sequence of progression of albuminuria and decreased GFR in persons with type 1 diabetes: a cohort study. Am J Kidney Dis 50:721–732

    Article  CAS  PubMed  Google Scholar 

  32. Molitch ME, Steffes M, Sun W et al (2010) Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 33:1536–1543. doi:10.2337/dc09-1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorn LM, Gordin D, Harjutsalo V, Hägg S, Masar R, Saraheimo M, Tolonen N, Wadén J, Groop PH, Forsblom CM; FinnDiane Study Group (2015) The Presence and Consequence of Nonalbuminuric Chronic Kidney Disease in Patients With Type 1 Diabetes. Diabetes Care. 38:2128–2133, doi: 10.2337/dc15-0641

    Article  Google Scholar 

  34. Argyropoulos C, Wang K, McClarty S et al (2013) Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 8:e54662. doi:10.1371/journal.pone0054662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zgibor JC, Ruppert K, Orchard TJ et al (2010) Development of a coronary heart disease risk prediction model for type 1 diabetes: the Pittsburgh CHD in type 1 diabetes risk model. Diabetes Res Clin Pract 88:314–321. doi:10.1016/j.diabres.2010.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Gudbjörnsdottir S, Swedish National Diabetes Register (2011) A new model for 5-year risk of cardiovascular disease in type 1 diabetes; from the Swedish National Diabetes Register (NDR). Diabet Med 28:1213–1220. doi:10.1111/j.1464-5491.2011.03342.x

    Article  CAS  PubMed  Google Scholar 

  37. Soedamah-Muthu SS, Vergouwe Y, Costacou T et al (2014) Predicting major outcomes in type 1 diabetes: a model development and validation study. Diabetologia 57:2304–2314. doi:10.1007/s00125-014-3358-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vistisen D, Andersen GS, Hansen CS et al (2016) Prediction of first cardiovascular disease event in type 1 diabetes mellitus: the steno type 1 risk engine. Circulation 133:1058–1066. doi:10.1161/CIRCULATIONAHA.115.018844

    Article  PubMed  Google Scholar 

  39. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group (2016) Risk factors for cardiovascular disease in type 1 diabetes. Diabetes 65:1370–1379. doi:10.2337/db15-1517

    Article  Google Scholar 

  40. Lloyd CE, Kuller LH, Becker DJ, Ellis D, Wing RR, Orchard TJ (1996) Coronary artery disease in IDDM: gender differences in risk factors, but not risk. Arterioscler Thromb Vasc Biol 16:720–726

    Article  CAS  PubMed  Google Scholar 

  41. Harjutsalo V, Maric-Bilkan C, Forsblom C, Groop PH (2014) Impact of sex and age at onset of diabetes on mortality from ischemic heart disease in patients with type 1 diabetes. Diabetes Care 37:144–148

    Article  PubMed  Google Scholar 

  42. Livingston SJ, Looker HC, Hothersall EJ et al (2012) Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med 9:e1001321. doi:10.1371/journal.pmed

    Article  Google Scholar 

  43. De Boer IH, Gao X, Cleary PA et al (2016) Albuminuria changes and cardiovascular and renal outcomes in type 1 diabetes: the DCCT/EDIC study. Clin J Am Soc Nephrol. 11:1969–1977

    Article  PubMed  Google Scholar 

  44. Tolonen N, Forsblom C, Mäkinen VP et al (2014) Different lipid variables predict incident coronary artery disease in patients with type 1 diabetes with or without diabetic nephropathy: the FinnDiane study. Diabetes Care 37:2374–2382. doi:10.2337/dc13-2873

    Article  CAS  PubMed  Google Scholar 

  45. Costacou T, Evans RW, Orchard TJ (2011) High-density lipoprotein cholesterol in diabetes: is higher always better? J Clin Lipidol 5:387–394. doi:10.1016/j.jacl.2011.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  46. Briel M, Ferreira-Gonzalez I, You JJ et al (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92. doi:10.1136/bmj.b92

    Article  PubMed  PubMed Central  Google Scholar 

  47. van der Steeg WA, Holme I, Boekholdt SM et al (2008) High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol 51:634–642

    Article  PubMed  Google Scholar 

  48. van Acker BA, Botma GJ, Zwinderman AH et al (2008) High HDL cholesterol does not protect against coronary artery disease when associated with combined cholesteryl ester transfer protein and hepatic lipase gene variants. Atherosclerosis 200:161–167

    Article  PubMed  Google Scholar 

  49. Orchard TJ, Costacou T, Kretowski A, Nesto RW (2006) Type 1 diabetes and coronary artery disease. Diabetes Care 29:2528–2538

    Article  PubMed  Google Scholar 

  50. Lind M, Svensson AM, Kosiborod M et al (2014) Glycemic control and excess mortality in type 1 diabetes. N Engl J Med 20(371):1972–1982. doi:10.1056/NEJMoa1408214

    Article  Google Scholar 

  51. Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM et al (2015) Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA 313:45–53. doi:10.1001/jama.2014.16107

    Article  Google Scholar 

  52. Miller RG, Secrest AM, Ellis D, Becker DJ, Orchard TJ (2013) Changing impact of modifiable risk factors on the incidence of major outcomes of type 1 diabetes: the Pittsburgh epidemiology of diabetes complications study. Diabetes Care 36:3999–4006

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nagareddy PR, Murphy AJ, Stirzaker RA et al (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller RG, Anderson SJ, Costacou T, Sekikawa A, Orchard TJ (2016) Risk stratification for 25-year cardiovascular disease incidence in type 1 diabetes: tree-structured survival analysis of the Pittsburgh epidemiology of diabetes complications study. Diabetes Vasc Dis Res 13:250–259. doi:10.1177/1479164116629353

    Article  CAS  Google Scholar 

  55. Gabay C, Kushner I (1999) Mechanisms of disease: acute-phase proteins and other systemic responses to inflammation. New Engl J Med 340:448–454

    Article  CAS  PubMed  Google Scholar 

  56. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42:1589–1600

    CAS  PubMed  Google Scholar 

  57. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12:189–261

    Article  CAS  PubMed  Google Scholar 

  58. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP (2005) Haptoglobin genotype and diabetes dependent differences in iron mediated oxidative stress in vitro and in vivo. Circ Res 96:435–441

    Article  CAS  PubMed  Google Scholar 

  59. Asleh R, Blum S, Kalet-Litman S et al (2008) Correction of HDL dysfunction in individuals with diabetes and the Haptoglobin 2-2 genotype. Diabetes 57:2794–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Watanabe J, Grijalva V, Hama S et al (2009) Hemoglobin and its scavenger protein haptoglobin associate with apoA-1-containing particles and influence the inflammatory properties and function of high density lipoprotein. J Biol Chem 284:18292–18301. doi:10.1074/jbc.M109.017202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Costacou T, Evans RW, Orchard TJ (2015) Does the concentration of oxidative and inflammatory biomarkers differ by Haptoglobin genotype in type 1 diabetes? Antioxid Redox Signal 23:1439–1444. doi:10.1089/ars.2015.6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cid MC, Grant DS, Hoffman GS, Auerbach R, Fauci AS, Kleinman HK (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Investig 91:977–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levy AP (2000) Haptoglobin genotype and vascular complications in patients with diabetes. New Engl J Med 343:969–970

    Article  CAS  PubMed  Google Scholar 

  64. Levy AP, Hochberg I, Jablonski K et al (2002) Haptoglobin genotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the strong heart study. J Am Coll Cardiol 40:1984–1990

    Article  PubMed  Google Scholar 

  65. Suleiman M, Aronson D, Asleh R et al (2005) Haptoglobin polymorphism predicts 30-day mortality and heart failure in patients with diabetes and acute myocardial infarction. Diabetes 54:2802–2806

    Article  CAS  PubMed  Google Scholar 

  66. Roguin A, Koch W, Kastrati A, Aronson D, Schomig A, Levy AP (2003) Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care 26:2628–2631

    Article  PubMed  Google Scholar 

  67. Adams JN, Cox AJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW (2013) Genetic analysis of haptoglobin polymorphisms with cardiovascular disease and type 2 diabetes in the diabetes heart study. Cardiovasc Diabetol 12:31. doi:10.1186/1475-2840-12-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Costacou T, Ferrell R, Orchard TJ (2008) Haptoglobin genotype: a determinant of cardiovascular complication risk in type 1 diabetes. Diabetes 57:1702–1706

    Article  CAS  PubMed  Google Scholar 

  69. Simpson M, Snell-Bergeon JK, Kinney GL et al (2011) Haptoglobin genotype predicts development of coronary artery calcification in a prospective cohort of patients with type 1 diabetes. Cardiovasc Diabetol 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Orchard TJ, Backlund JC, Costacou T et al (2016) Haptoglobin 2-2 genotype and the risk of coronary artery disease in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC). J Diabetes Complicat 30(8):1577-1584. doi:10.1016/j.jdiacomp.2016.07.014

    Article  PubMed  Google Scholar 

  71. Costacou T, Evans RW, Orchard TJ (2016) Glycaemic control modifies the haptoglobin 2 allele-conferred susceptibility to coronary artery disease in type 1 diabetes. Diabet Med. doi:10.1111/dme.13127

    PubMed  Google Scholar 

  72. Levy AP, Gerstein H, Lotan R et al (2004) The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Diabetes Care 27:2767

    Article  PubMed  Google Scholar 

  73. Blum S, Vardi M, Levy NS, Miller-Lotan R, Levy AP (2010) The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Atherosclerosis 211:25–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Milman U, Blum S, Shapira C et al (2008) Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol 28:341–347

    Article  CAS  PubMed  Google Scholar 

  75. Vardi M, Blum S, Levy AP (2012) Haptoglobin genotype and cardiovascular outcomes in diabetes mellitus: natural history of the disease and the effect of vitamin E treatment: meta-analysis of the medical literature. Eur J Intern Med 23:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rohatgi A, Khera A, Berry JD et al (2014) HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 371:2383–2393. doi:10.1056/NEJMoa1409065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saleheen D, Scott R, Javad S et al (2015) Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 3:507–513. doi:10.1016/S2213-8587(15)00126-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ritsch A, Scharnagl H (2015) HDL cholesterol efflux capacity and cardiovascular events. N Engl J Med 372:1870

    PubMed  Google Scholar 

  79. Costacou T, Levy AP, Miller RG et al (2016) Effect of vitamin E supplementation on HDL function by Haptoglobin genotype in type 1 diabetes: results from the HapE randomized crossover pilot trial. Acta Diabetol 53:243–250. doi:10.1007/s00592-015-0770-8

    Article  CAS  PubMed  Google Scholar 

  80. Costacou T, Rosano C, Aizenstein H et al (2015) The Haptoglobin 1 allele correlates with white matter hyperintensities in middle-aged adults with type 1 diabetes. Diabetes 64:654–659

    Article  CAS  PubMed  Google Scholar 

  81. Costacou T, Secrest A, Ferrell RE, Orchard TJ (2014) Haptoglobin genotype and cerebrovascular disease incidence in type 1 diabetes. Diabetes Vasc Dis Res 11:335–342

    Article  CAS  Google Scholar 

  82. Staals J, Pieters BMA, Knottnerus ILH et al (2008) Haptoglobin polymorphism and lacunar stroke. Curr Neurovasc Res 5:153–158

    Article  CAS  PubMed  Google Scholar 

  83. Staals J, Henskens LHG, Delanghe JR et al (2010) Haptoglobin phenotype correlates with the extent of cerebral deep white matter lesions in hypertensive patients. Curr Neurovasc Res 7:1–5

    Article  CAS  PubMed  Google Scholar 

  84. Costacou T, Levy AP (2012) Haptoglobin genotype and its role in diabetic cardiovascular disease. J Cardiovasc Transl Res 5:423–435

    Article  PubMed  PubMed Central  Google Scholar 

  85. Costacou T, Ferrell RE, Ellis D, Orchard TJ (2009) Haptoglobin genotype and renal function decline in type 1 diabetes. Diabetes 58:2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Orchard TJ, Sun W, Cleary PA et al (2013) Haptoglobin genotype and the rate of renal function decline in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes 62:3218–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewis EJ, Xu X (2008) Abnormal glomerular permeability characteristics in diabetic nephropathy: implications for the therapeutic use of low-molecular weight heparin. Diabetes Care 31:S202–S207

    Article  CAS  PubMed  Google Scholar 

  88. Nakhoul FM, Miller-Lotan R, Awad H et al (2009) Pharmacogenomic effect of vitamin E on kidney structure and function in transgenic mice with the Haptoglobin 2-2 genotype and diabetes mellitus. Am J Physiol Renal Physiol 296:F830–F838

    Article  CAS  PubMed  Google Scholar 

  89. Costacou T, Orchard TJ (2016) The haptoglobin genotype predicts cardio-renal mortality in type 1 diabetes. J Diabetes Complicat 30:221–226. doi:10.1016/j.jdiacomp.2015.11.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Costacou.

Ethics declarations

Conflict of interest

None.

Human and animal rights disclosure

This is a review article and, as such, does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orchard, T.J., Costacou, T. Cardiovascular complications of type 1 diabetes: update on the renal link. Acta Diabetol 54, 325–334 (2017). https://doi.org/10.1007/s00592-016-0949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0949-7

keywords

Navigation