Skip to main content

Advertisement

Log in

How increased VEGF induces glomerular hyperpermeability: a potential signaling pathway of Rac1 activation

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Despite growing evidence for a pathogenic role of vascular endothelial growth factor (VEGF) in microvascular complications of diabetes, the underlying mechanism responsible for its detrimental effect remains unknown. In the current study, we hypothesized that some of the detrimental effects of VEGF on microvascular endothelial cells in the diabetic milieu stem from its aberrant signaling, which leads to perturbed tight junction assembly and increased endothelial permeability. Using an integrated in vitro approach, we investigated whether the effect of VEGF on endothelial cell permeability involves Rac1 GTPase activation and tight junction disassembly. Rac1 activity was detected by Western blotting in cell membrane protein as well as pull-down assay. The permeability of glomerular endothelial cells monolayer was detected as transendothelial electronic resistance. Then tyrosine phosphorylated occludin protein was detected by Western blotting after immunoprecipitation. N17Rac1 cells are obtained by transfection of glomerular endothelial cells with a dominant negative mutant of Rac1. The data obtained in this study indicate that activation of Rac1 GTPase contributes to VEGF-induced endothelial cell hyperpermeability. We also observed that Rac1 activation leads to increased endothelial permeability through tyrosine phosphorylation of occludin. Indeed, N17Rac1 cells dramatically attenuated the effect of VEGF on phospho-occludin and endothelial cell permeability. These results, when taken together, provide a framework for understanding the role of VEGF-induced Rac1/phospho-occludin pathway in the integrity of endothelial barrier function in the glomerulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  CAS  PubMed  Google Scholar 

  2. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  3. Simon M, Rockl W, Hornig C, Grone EF, Theis H, Weich HA, Fuchs E, Yayon A, Grone HJ (1998) Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol 9:1032–1044

    CAS  PubMed  Google Scholar 

  4. Cha DR, Kang YS, Han SY, Jee YH, Han KH, Han JY, Kim YS, Kim NH (2004) Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats. J Endocrinol 183:183–194

    Article  CAS  PubMed  Google Scholar 

  5. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, Casley DJ, Bach LA, Kelly DJ, Gilbert RE (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48:2229–2239

    Article  CAS  PubMed  Google Scholar 

  6. Balda MS, Matter K (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 19:2024–2033

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Mrsny RJ (2000) Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 148:791–800

    Article  CAS  PubMed  Google Scholar 

  8. Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36:1206–1237

    Article  CAS  PubMed  Google Scholar 

  9. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    Article  CAS  PubMed  Google Scholar 

  10. Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60:121–142

    Article  CAS  PubMed  Google Scholar 

  11. Wong V (1997) Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol Cell Physiol 273:C1859–C1867

    CAS  Google Scholar 

  12. Chen Y-H, Lu Q, Goodenough DA, Jeansonne B (2002) Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Mol Biol Cell 13:1227–1237

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  CAS  PubMed  Google Scholar 

  14. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  CAS  PubMed  Google Scholar 

  15. Tsukamoto T, Nigam SK (1999) Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol Renal Physiol 276:F737–F750

    CAS  Google Scholar 

  16. Seth A, Sheth P, Elias BC, Rao R (2007) Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly of tight junctions in the CACO-2 cell monolayer. J Biol Chem 282:11487–11498

    Article  CAS  PubMed  Google Scholar 

  17. Sheth P, Basuroy S, Li C, Naren AP, Rao RK (2003) Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 278:49239–49245

    Article  CAS  PubMed  Google Scholar 

  18. Andreeva AY, Krause E, Muller E-C, Blasig IE, Utepbergenov DI (2001) Protein kinase C regulates the phosphorylation and cellular localization of occludin. J Biol Chem 276:38480–38486

    Article  CAS  PubMed  Google Scholar 

  19. Cordenonsi M, Mazzon E, De Rigo L, Baraldo S, Meggio F, Citi S (1997) Occludin dephosphorylation in early development of Xenopus laevis. J Cell Sci 110:3131–3139

    CAS  PubMed  Google Scholar 

  20. Cordenonsi M, Turco F, D’Atri F, Hammar E, Martinucci G, Meggio F, Citi S (1999) Xenopus laevis occludin: identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. Eur J Biochem 264:374–384

    Article  CAS  PubMed  Google Scholar 

  21. Kale G, Naren AP, Sheth P, Rao RK (2003) Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys Res Commun 302:324–329

    Article  CAS  PubMed  Google Scholar 

  22. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  CAS  PubMed  Google Scholar 

  23. Bruewer M, Hopkins AM, Hobert ME, Nusrat A, Madara JL (2004) RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 287:C327–C335

    Article  CAS  PubMed  Google Scholar 

  24. Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A (2003) Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 116:725–742

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson JR, Dudek SM, Singleton PA, Kolosova IA, Verin AD, Garcia JGN (2006) Endothelial cell barrier enhancement by ATP is mediated by the small GTPase Rac and cortactin. Am J Physiol Lung Cell Mol Physiol 291:L289–L295

    Article  CAS  PubMed  Google Scholar 

  26. Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA 92:10629–10633

    Article  CAS  PubMed  Google Scholar 

  27. Aznar S, Lacal J (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10

    Article  CAS  PubMed  Google Scholar 

  28. Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103:227–238

    Article  CAS  PubMed  Google Scholar 

  29. Bishop A, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  Google Scholar 

  30. Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742

    Article  CAS  PubMed  Google Scholar 

  31. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  32. Zeng L, Xu H, Chew T-L, Eng E, Sadeghi MM, Adler S, Kanwar YS, Danesh FR (2005) HMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation. FASEB J 19(13):1845–1847

    CAS  PubMed  Google Scholar 

  33. Jacobson JR, Dudek SM, Birukov KG, Ye SQ, Grigoryev DN, Girgis RE, Garcia JGN (2004) Cytoskeletal activation and altered gene expression in endothelial barrier regulation by Simvastatin. Am J Respir Cell Mol Biol 30:662–670

    Article  CAS  PubMed  Google Scholar 

  34. Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39(4–5):187–199

    Article  CAS  PubMed  Google Scholar 

  35. Wojciak-Stothard B, Tsang LYF, Haworth SG (2005) Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288:L749–L760

    Article  CAS  PubMed  Google Scholar 

  36. Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355

    CAS  PubMed  Google Scholar 

  37. Wojciak-Stothard B, Tsang LYF, Paleolog E, Hall SM, Haworth SG (2006) Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L1173–L1182

    Article  CAS  PubMed  Google Scholar 

  38. van Wetering S, van Buul JD, Quik S, Mul FPJ, Anthony EC, J-Pt Klooster, Collard JG, Hordijk PL (2002) Reactive oxygen species mediate Rac-induced loss of cell–cell adhesion in primary human endothelial cells. J Cell Sci 115:1837–1846

    PubMed  Google Scholar 

  39. Vouret-Craviari V, Boquet P, Pouyssegur J, Van Obberghen-Schilling E (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9:2639–2653

    CAS  PubMed  Google Scholar 

  40. Clarke H, Soler AP, Mullin JM (2000) Protein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets. J Cell Sci 113:3187–3196

    CAS  PubMed  Google Scholar 

  41. Vouret-Craviari V, Bourcier C, Boulter E, Van Obberghen-Schilling E (2002) Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 115:2475–2484

    CAS  PubMed  Google Scholar 

  42. Jou T-S, Schneeberger EE, James Nelson W (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 142:101–115

    Article  CAS  PubMed  Google Scholar 

  43. Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    CAS  PubMed  Google Scholar 

  44. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  CAS  PubMed  Google Scholar 

  45. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical- basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049

    Article  CAS  PubMed  Google Scholar 

  46. Farshori P, Kachar B (1999) Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170:147–156

    Article  CAS  PubMed  Google Scholar 

  47. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden: a potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Teng-Leong Chow and Satya Khuon for their helpful discussions and technical support. This project was funded by the National Natural Science Foundation of China (No.30771011) and Guangdong Natural Science Foundation (No. 06300757).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan-qi Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Wang, C., Ye, Zc. et al. How increased VEGF induces glomerular hyperpermeability: a potential signaling pathway of Rac1 activation. Acta Diabetol 47 (Suppl 1), 57–63 (2010). https://doi.org/10.1007/s00592-009-0121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-009-0121-8

Keywords

Navigation