Skip to main content

Advertisement

Log in

Biomechanics of hamstring tendon, quadriceps tendon, and bone–patellar tendon–bone grafts for anterior cruciate ligament reconstruction: a cadaveric study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

The three most commonly used autografts for anterior cruciate ligament reconstruction (ACL) are: bone–patellar tendon–bone (BTB), hamstring tendons (HT), and quadriceps tendon (QT). A cadaveric study was performed to determine if there were any differences in mechanical and structural properties under biomechanical testing.

Methods

Twenty-seven graft specimens were harvested from 9 human cadaveric legs. Mean donor age was 75.2 years (range 53–85 years). Twenty-two specimens (8 HT, 7 QT, and 7 BTB) completed cyclic preconditioning from 50 to 800 N for 200 cycles and a load to failure test at an extension rate of 1 mm/s. Structural and mechanical properties of BTB, HT, and QT grafts were compared using a one-way ANOVA and Tukey’s honest significant difference.

Results

There was no difference in the ultimate load to failure (N) across all 3 graft types (p = 0.951). Quadriceps tendon demonstrated greater cross-sectional area (mm2) when compared to both HT and BTB (p = 0.001) and was significantly stiffer (N/mm) than HT but not BTB (p = 0.004). Stress (N/mm2) of the HT at ultimate load was greater than QT but not BTB (p = 0.036). Elastic modulus (MPa) of HT was greater than both QT and BTB (p = 0.016).

Conclusion

There was no difference in the ultimate load to failure of BTB, HT, and QT grafts harvested from the same specimens. All 3 grafts had similar loads to failure with a significant increase in stiffness when compared to the native ACL. Furthermore, QT demonstrated more favourable structural properties compared to HT and BTB with greater cross-sectional area to both HT and BTB and greater stiffness compared to HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and materials are available upon request.

References

  1. Shelton WR, Fagan BC (2011) Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 19:259–264

    Article  PubMed  Google Scholar 

  2. Junkin D, Johnson D, Fu F, et al (2009) Knee ligament injuries. In: orthopaedic knowledge update : sports medicine 4. American Academy of Orthopaedic Surgeons, pp 135–154

  3. Marx RG, Jones EC, Angel M et al (2003) Beliefs and attitudes of members of the American academy of orthopaedic surgeons regarding the treatment of anterior cruciate ligament injury. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 19:762–770

    Article  Google Scholar 

  4. Budny J, Fox J, Rauh M, Fineberg M (2017) Emerging trends in anterior cruciate ligament reconstruction. J Knee Surg 30:63–69. https://doi.org/10.1055/s-0036-1579788

    Article  PubMed  Google Scholar 

  5. Mouarbes D, Menetrey J, Marot V et al (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med 47:3531–3540. https://doi.org/10.1177/0363546518825340

    Article  PubMed  Google Scholar 

  6. Bonamo JJ, Krinick RM, Sporn AA (1984) Rupture of the patellar ligament after use of its central third for anterior cruciate reconstruction. A report of two cases. J Bone Joint Surg Am 66:1294–1297

    Article  CAS  PubMed  Google Scholar 

  7. Christen B, Jakob RP (1992) Fractures associated with patellar ligament grafts in cruciate ligament surgery. J Bone Joint Surg Br 74:617–619

    Article  CAS  PubMed  Google Scholar 

  8. Sachs RA, Daniel DM, Stone ML, Garfein RF (1989) Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med 17:760–765

    Article  CAS  PubMed  Google Scholar 

  9. Beasley LS, Weiland DE, Vidal AF et al (2005) Anterior cruciate ligament reconstruction: a literature review of the anatomy biomechanics surgical considerations and clinical outcomes. Anat ACL Reconstr Part 1 Related Basic Clin Sci 15:5–19. https://doi.org/10.1053/j.oto.2004.11.003

    Article  Google Scholar 

  10. Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1139–1174. https://doi.org/10.1016/j.arthro.2009.07.021

    Article  Google Scholar 

  11. Mohtadi NG, Chan DS, Dainty KN, Whelan DB (2011) Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005960.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conte EJ, Hyatt AE, Gatt CJ, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 30:882–890. https://doi.org/10.1016/j.arthro.2014.03.028

    Article  Google Scholar 

  13. Magnussen RA, Lawrence JTR, West RL et al (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 28:526–531. https://doi.org/10.1016/j.arthro.2011.11.024

    Article  Google Scholar 

  14. Kvist J, Kartus J, Karlsson J, Forssblad M (2014) Results from the Swedish national anterior cruciate ligament register. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 30:803–810. https://doi.org/10.1016/j.arthro.2014.02.036

    Article  Google Scholar 

  15. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 31:541–554. https://doi.org/10.1016/j.arthro.2014.11.010

    Article  Google Scholar 

  16. Marshall JL, Warren RF, Wickiewicz TL, Reider B (1979) The anterior cruciate ligament: a technique of repair and reconstruction. Clin Orthop. https://doi.org/10.1097/00003086-197909000-00014

    Article  PubMed  Google Scholar 

  17. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    Article  CAS  PubMed  Google Scholar 

  18. Harris NL, Smith DA, Lamoreaux L, Purnell M (1997) Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: morphometric and biomechanical evaluation. Am J Sports Med 25:23–28. https://doi.org/10.1177/036354659702500105

    Article  CAS  PubMed  Google Scholar 

  19. Stäubli HU, Schatzmann L, Brunner P et al (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27:27–34. https://doi.org/10.1177/03635465990270011301

    Article  PubMed  Google Scholar 

  20. Ajrawat P, Dwyer T, Whelan D et al (2019) A comparison of quadriceps tendon autograft with bone-patellar tendon-bone autograft and hamstring tendon autograft for primary anterior cruciate ligament reconstruction: a systematic review and quantitative synthesis. Clin J Sport Med Off J Can Acad Sport Med. https://doi.org/10.1097/JSM.0000000000000765

    Article  Google Scholar 

  21. Hamner DL, Brown CH, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557. https://doi.org/10.2106/00004623-199904000-00013

    Article  CAS  PubMed  Google Scholar 

  22. Hangody G, Szebényi G, Abonyi B et al (2017) Does a different dose of gamma irradiation have the same effect on five different types of tendon allografts? - a biomechanical study. Int Orthop 41:357–365. https://doi.org/10.1007/s00264-016-3336-7

    Article  PubMed  Google Scholar 

  23. Pearsall AW, Hollis JM, Russell GV, Scheer Z (2003) A biomechanical comparison of three lower extremity tendons for ligamentous reconstruction about the knee. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 19:1091–1096. https://doi.org/10.1016/j.arthro.2003.10.015

    Article  Google Scholar 

  24. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  25. Shani RH, Umpierez E, Nasert M et al (2016) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 32:71–75. https://doi.org/10.1016/j.arthro.2015.06.051

    Article  Google Scholar 

  26. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62:259–270

    Article  CAS  PubMed  Google Scholar 

  27. Urchek R, Karas S (2019) Biomechanical comparison of quadriceps and 6-strand hamstring tendon grafts in anterior cruciate ligament reconstruction. Orthop J Sports Med 7:2325967119879113. https://doi.org/10.1177/2325967119879113

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilson SF, Marks R, Collins N et al (2004) Benefits of multidisciplinary case conferencing using audiovisual compared with telephone communication: a randomized controlled trial. J Telemed Telecare 10:351–354. https://doi.org/10.1258/1357633042602026

    Article  CAS  PubMed  Google Scholar 

  29. Boniello MR, Schwingler PM, Bonner JM et al (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 31:1084–1090. https://doi.org/10.1016/j.arthro.2014.12.023

    Article  Google Scholar 

  30. Wilson TW, Zafuta MP, Zobitz M (1999) A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. Am J Sports Med 27:202–207. https://doi.org/10.1177/03635465990270021501

    Article  CAS  PubMed  Google Scholar 

  31. Cooper DE, Deng XH, Burstein AL, Warren RF (1993) The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med 21:818–823. https://doi.org/10.1177/036354659302100610

    Article  CAS  PubMed  Google Scholar 

  32. Flahiff CM, Brooks AT, Hollis JM et al (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23:354–358. https://doi.org/10.1177/036354659502300319

    Article  CAS  PubMed  Google Scholar 

  33. Schimoler PJ, Braun DT, Miller MC, Akhavan S (2015) Quadrupled hamstring graft strength as a function of clinical sizing. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 31:1091–1096. https://doi.org/10.1016/j.arthro.2015.01.013

    Article  Google Scholar 

  34. Cavaignac E, Pailhé R, Reina N et al (2016) Can the gracilis replace the anterior cruciate ligament in the knee? A biomechanical study. Int Orthop 40:1647–1653. https://doi.org/10.1007/s00264-015-3027-9

    Article  PubMed  Google Scholar 

  35. Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction : quadriceps versus patellar autograft. Clin Orthop 466:198–204. https://doi.org/10.1007/s11999-007-0015-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hersekli MA, Akpinar S, Ozalay M et al (2004) Tunnel enlargement after arthroscopic anterior cruciate ligament reconstruction: comparison of bone-patellar tendon-bone and hamstring autografts. Adv Ther 21:123–131. https://doi.org/10.1007/bf02850339

    Article  PubMed  Google Scholar 

  37. Xerogeanes JW, Mitchell PM, Karasev PA et al (2013) Anatomic and morphological evaluation of the quadriceps tendon using 3-dimensional magnetic resonance imaging reconstruction: applications for anterior cruciate ligament autograft choice and procurement. Am J Sports Med 41:2392–2399. https://doi.org/10.1177/0363546513496626

    Article  PubMed  Google Scholar 

  38. Woo SL, Debski RE, Withrow JD, Janaushek MA (1999) Biomechanics of knee ligaments. Am J Sports Med 27:533–543. https://doi.org/10.1177/03635465990270042301

    Article  CAS  PubMed  Google Scholar 

  39. Johnson GA, Tramaglini DM, Levine RE et al (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res Off Publ Orthop Res Soc 12:796–803. https://doi.org/10.1002/jor.1100120607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Orthopaedic Innovation Centre in Winnipeg, Manitoba, Canada, for their assistance with mechanical testing and clamp design and fabrication in this study.

Funding

This study was funded by the University of Manitoba Alexander Gibson Fund and the Pan Am Clinic Foundation. The institution of authors DH, SM, and PM has received general funds for research and education from Arthrex, CONMED Linvatec, and Zimmer Biomet.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the project. DH, TG-D, JL, and PM designed the study. DH conducted the data acquisition. DH and SM participated in the analysis of the data. DH, TG-D, JL, RL, ASE, SM, and PM conducted the data interpretation. DH, TG-D, JL, RL, ASE, SM, and PM drafted and reviewed the manuscript. All of the authors approved the content of the manuscript before the submission.

Corresponding author

Correspondence to Darren Hart.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Ethical approval for this study was obtained from the University of Manitoba Research Ethics and Compliance Health Research Ethics Board. Ethics# HS24041(H2020:301).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, D., Gurney-Dunlop, T., Leiter, J. et al. Biomechanics of hamstring tendon, quadriceps tendon, and bone–patellar tendon–bone grafts for anterior cruciate ligament reconstruction: a cadaveric study. Eur J Orthop Surg Traumatol 33, 1067–1074 (2023). https://doi.org/10.1007/s00590-022-03247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-022-03247-6

Keywords

Navigation