Skip to main content
Log in

Comparisons between needle puncture and chondroitinase ABC to induce intervertebral disc degeneration in rabbits

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare the effect of needle puncture and chondroitinase ABC (ChABC) injection on inducing intervertebral disc (IVD) degeneration (IVDD) in rabbits.

Methods

Sixteen New Zealand white rabbits were used in this study. Briefly, the rabbits were divided into four groups. In the annulus fibrosis (AF) needle puncture group, a 16-G needle was used to puncture the L5-6 and L6-7 IVDs, while in the sham group, these IVDs were not punctured. In the ChABC group, 30 μL 0.5 Unit/mL ChABC was injected into L5-6 and L6-7 IVDs using a 26-G needle, while in the vehicle group, these IVDs were injected with 30 μL phosphate-buffered saline (PBS). X-ray and MRI scans were performed at the 4th, 12th and 16th weeks postoperatively. Histological, immunohistochemical and biochemical analyses were performed at the 16th week postoperatively.

Results

Both needle puncture and ChABC successfully established IVDD in rabbits at 4th, 12th and 16th weeks, confirmed by X-ray and MRI scan. The progression of IVDD went in a time-dependent manner. The IVDD in the ChABC group was less severe than in the needle puncture group throughout the study. Aggrecan and type II collagen significantly decreased, while tumor necrosis factor-α and superoxide dismutase 2 increased in the needle puncture and ChABC groups, compared with the sham and PBS groups.

Conclusions

Both AF needle puncture and ChABC injection can successfully induce IVDD in rabbits. Compared with ChABC injection, AF needle puncture can induce more severe IVDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

AB:

Alcian blue

ADAMTs:

A disintegrin and metalloproteinase with thrombospondin motifs

AF:

Annulus fibrosis

ChABC:

Chondroitinase ABC

COL2:

Type II collagen

DHI:

Disc height index

ECM:

Extracellular matrix

H&E:

Hematoxylin and eosin

IL-1:

Interleukin-1

IL-17:

Interleukin-17

IQR:

Interquartile range

IVD:

Intervertebral disc

IVDD:

Intervertebral disc degeneration

LBP:

Low back pain

MMPs:

Matrix metalloproteinases

NP:

Nucleus pulposus

PBS:

Phosphate-buffered saline

ROI:

Region of interest

SO/FG:

Safranin O/Fast green

SOD2:

Superoxide dismutase 2

TNF-α:

Tumor necrosis factor-α

References

  1. Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, Williams G, Smith E, Vos T, Barendregt J, Murray C, Burstein R, Buchbinder R (2014) The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 73:968–974. https://doi.org/10.1136/annrheumdis-2013-204428

    Article  PubMed  Google Scholar 

  2. Katz JN (2006) Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am 88(Suppl 2):21–24. https://doi.org/10.2106/jbjs.E.01273

    Article  PubMed  Google Scholar 

  3. Anderson DG, Tannoury C (2005) Molecular pathogenic factors in symptomatic disc degeneration. Spine J 5:260s–266s. https://doi.org/10.1016/j.spinee.205.02.010

    Article  PubMed  Google Scholar 

  4. Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25:487–492. https://doi.org/10.1097/00007632-200002150-00016

    Article  CAS  PubMed  Google Scholar 

  5. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137. https://doi.org/10.1006/excr.1998.4287

    Article  CAS  PubMed  Google Scholar 

  6. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130. https://doi.org/10.1186/ar629

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183:2593–2603. https://doi.org/10.1084/jem.183.6.2593

    Article  CAS  PubMed  Google Scholar 

  8. Le Maitre CL, Hoyland JA, Freemont AJ (2007) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9:R77. https://doi.org/10.1186/ar2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang S, Zhang F, Ma J, Ding W (2020) Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. Ageing Res Rev 57:100978. https://doi.org/10.1016/j.arr.2019.100978

    Article  CAS  PubMed  Google Scholar 

  10. Smith LJ, Chiaro JA, Nerurkar NL, Cortes DH, Horava SD, Hebela NM, Mauck RL, Dodge GR, Elliott DM (2011) Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 22:291–301. https://doi.org/10.22203/ecm.v022a22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482–491. https://doi.org/10.1002/art.24291

    Article  CAS  PubMed  Google Scholar 

  12. Lee DC, Adams CS, Albert TJ, Shapiro IM, Evans SM, Koch CJ (2007) In situ oxygen utilization in the rat intervertebral disc. J Anat 210:294–303. https://doi.org/10.1155/2020/6660429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin R, Dai S, Zhang X, Liu H, Zhou B, Zhou P, Hu C (2020) Danshen attenuates intervertebral disc degeneration via antioxidation in SD rats. Oxid Med Cell Longev 2020:6660429. https://doi.org/10.1155/2020/6660429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki S, Fujita N, Hosogane N, Watanabe K, Ishii K, Toyama Y, Takubo K, Horiuchi K, Miyamoto T, Nakamura M, Matsumoto M (2015) Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Res Ther 17:316. https://doi.org/10.1186/s13075-015-0834-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimozi A, Mavrogonatou E, Sklirou A, Kletsas D (2015) Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. Eur Cells Mater 30:89–103. https://doi.org/10.22203/eCM.v030a07

    Article  CAS  Google Scholar 

  16. Lee CS, Hwang CJ, Lee SW, Ahn YJ, Kim YT, Lee DH, Lee MY (2009) Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J 18:1637–1643. https://doi.org/10.1007/s00586-009-1060-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. van Uden S, Silva-Correia J, Oliveira JM, Reis RL (2017) Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res 21:22. https://doi.org/10.1186/s40824-017-0106-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sloan SR Jr, Lintz M, Hussain I, Hartl R, Bonassar LJ (2018) Biologic annulus fibrosus repair: a review of preclinical In Vivo investigations. Tissue Eng Part B Rev 24:179–190. https://doi.org/10.1089/ten.TEB.2017.0351

    Article  PubMed  Google Scholar 

  19. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19. https://doi.org/10.1007/s00586-007-0414-y

    Article  PubMed  Google Scholar 

  20. Singh K, Masuda K, An HS (2005) Animal models for human disc degeneration. Spine J 5:267s–279s. https://doi.org/10.1016/j.spinee.2005.02.016

    Article  PubMed  Google Scholar 

  21. Kim KS, Yoon ST, Li J, Park JS, Hutton WC (2005) Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 30:33–37. https://doi.org/10.1097/01.brs.0000149191.02304.9b

    Article  PubMed  Google Scholar 

  22. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690. https://doi.org/10.1097/00007632-200212010-00007

    Article  PubMed  Google Scholar 

  23. Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine 29:2742–2750. https://doi.org/10.1097/01.brs.0000146498.04628.f9

    Article  PubMed  Google Scholar 

  24. Sun F, Qu JN, Zhang YG (2013) Animal models of disc degeneration and major genetic strategies. Pain Physician 16:E267-275

    PubMed  Google Scholar 

  25. Moss IL, Zhang Y, Shi P, Chee A, Piel MJ, An HS (2013) Retroperitoneal approach to the intervertebral disc for the annular puncture model of intervertebral disc degeneration in the rabbit. Spine J 13:229–234. https://doi.org/10.1016/j.spinee.2012.02.028

    Article  PubMed  Google Scholar 

  26. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14. https://doi.org/10.1097/01.brs.0000148152.04401.20

    Article  PubMed  Google Scholar 

  27. Ando T, Kato F, Mimatsu K, Iwata H (1995) Effects of chondroitinase ABC on degenerative intervertebral discs. Clin Orthop Relat Res 214–221

  28. Liu S, Yang SD, Huo XW, Yang DL, Ma L, Ding WY (2018) 17β-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model. Artif Cells Nanomed Biotechnol 46:182–191. https://doi.org/10.1080/21691401.2018.1453826

    Article  CAS  PubMed  Google Scholar 

  29. Leckie SK, Sowa GA, Bechara BP, Hartman RA, Coelho JP, Witt WT, Dong QD, Bowman BW, Bell KM, Vo NV, Kramer BC, Kang JD (2013) Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J 13:263–272. https://doi.org/10.1016/j.spinee.2012.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qian J, Ge J, Yan Q, Wu C, Yang H, Zou J (2019) Selection of the optimal puncture needle for induction of a rat intervertebral disc degeneration model. Pain Physician 22:353–360

    PubMed  Google Scholar 

  31. Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic EJ (2008) The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33:588–596. https://doi.org/10.1097/BRS.0b013e318166e0a2

    Article  PubMed  Google Scholar 

  32. Hoogendoorn RJ, Wuisman PI, Smit TH, Everts VE, Helder MN (2007) Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine 32:1816–1825. https://doi.org/10.1097/BRS.0b013e31811ebac5

    Article  PubMed  Google Scholar 

  33. Borem R, Walters J, Madeline A, Madeline L, Gill S, Easley J, Mercuri J (2021) Characterization of chondroitinase-induced lumbar intervertebral disc degeneration in a sheep model intended for assessing biomaterials. J Biomed Mater Res A 109:1232–1246. https://doi.org/10.1002/jbm.a.37117

    Article  CAS  PubMed  Google Scholar 

  34. Kato F, Iwata H, Mimatsu K, Miura T (1990) Experimental chemonucleolysis with chondroitinase ABC. Clin Orthop Relat Res 235:301–308

    Google Scholar 

  35. Park JS, Ahn JI (1995) The effect of chondroitinase ABC on rabbit intervertebral disc. Radiological, histological and electron microscopic findings. Int Orthop 19:103–109. https://doi.org/10.1007/bf00179970

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi T, Kurihara H, Nakajima S, Kato T, Matsuzaka S, Sekiguchi T, Onaya M, Miyauchi S, Mizuno S, Horie K, Fujita Y, Hirose T (1996) Chemonucleolytic effects of chondroitinase ABC on normal rabbit intervertebral discs. Course of action up to 10 days postinjection and minimum effective dose. Spine 21:2405–2411. https://doi.org/10.1097/00007632-199611010-00001

    Article  CAS  PubMed  Google Scholar 

  37. Leung VY, Chan D, Cheung KM (2006) Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 3:S406-413. https://doi.org/10.1007/s00586-006-0183-z

    Article  Google Scholar 

  38. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011

    Article  CAS  PubMed  Google Scholar 

  39. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG (2005) A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30:15–24. https://doi.org/10.1097/01.brs.0000148048.15348.9b

    Article  PubMed  Google Scholar 

  40. Daly C, Ghosh P, Jenkin G, Oehme D, Goldschlager T (2016) A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. Biomed Res Int 2016:5952165. https://doi.org/10.1155/2016/5952165

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sasaki M, Takahashi T, Miyahara K, Hirosea T (2001) Effects of chondroitinase ABC on intradiscal pressure in sheep: an in vivo study. Spine 26:463–468. https://doi.org/10.1097/00007632-200103010-00008

    Article  CAS  PubMed  Google Scholar 

  42. Xi Y, Kong J, Liu Y, Wang Z, Ren S, Diao Z, Hu Y (2013) Minimally invasive induction of an early lumbar disc degeneration model in rhesus monkeys. Spine 38:E579-586. https://doi.org/10.1097/BRS.0b013e31828b695b

    Article  PubMed  Google Scholar 

  43. Lei T, Zhang Y, Zhou Q, Luo X, Tang K, Chen R, Yu C, Quan Z (2017) A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits. Am J Transl Res 9:900–909

    PubMed  PubMed Central  Google Scholar 

  44. Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42:465–477. https://doi.org/10.1016/j.ocl.2011.07.010

    Article  PubMed  Google Scholar 

  45. Guehring T, Wilde G, Sumner M, Grünhagen T, Karney GB, Tirlapur UK, Urban JP (2009) Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum 60:1026–1034. https://doi.org/10.1002/art.24407

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give special thanks to Mr. Samuel Rudd, who is from The University of Queensland, Australia, for checking and editing the language used in this paper.

Funding

This study was supported by Natural Science Foundation of Hebei Province (No. H2021108006).

Author information

Authors and Affiliations

Authors

Contributions

SY, ZW, WD and WZ: were responsible for study design. SY, ZS, DJ, YH, YZ and KY: contributed to surgical implementation and sample processing. SY, JM, YH and KY: were responsible for data analysis. KY: drafted the manuscript. SY and KY: edited and revised the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Sidong Yang.

Ethics declarations

Conflict of interest

These authors have no conflict of interest to declare.

Ethical approval

All research protocols have been approved by the Animal Care and Use Committee of Orthopedic Hospital of Xingtai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Song, Z., Jia, D. et al. Comparisons between needle puncture and chondroitinase ABC to induce intervertebral disc degeneration in rabbits. Eur Spine J 31, 2788–2800 (2022). https://doi.org/10.1007/s00586-022-07287-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07287-8

Keywords

Navigation