Skip to main content

Advertisement

Log in

Anterior stand-alone fusion revisited: a prospective clinical, X-ray and CT investigation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to assess the mid-term clinical and radiological results as well as patient safety in terms of complication and reoperation rates in patients treated with a novel anterior stand-alone fusion (ASAF) device (Synfix-LR, DePuy Synthes, West Chester, PA, USA) in a cohort of patients with predominant and intractable low back pain originating from monosegmental degenerative disc disease at the lumbosacral junction.

Methods

Clinical outcome scores visual analog scale (VAS), Oswestry disability index (ODI) and patient satisfaction rates were acquired within the framework of an ongoing single-center prospective clinical trial. Evaluation of radiological data included segmental and global lumbar lordosis, neuroforaminal height and width. Interbody fusion was assessed from post-operative CT scans. The minimum follow-up (FU) was 12 months.

Results

71 out of an initial 77 patients were available for final FU (92.2 % FU rate) after a mean FU of 35.1 months (range 12.0–85.5 months). The overall results revealed a highly significant improvement from baseline VAS and ODI levels (p < 0.0001). 77.5 % (n = 55/71) of all patients reported a ‘highly satisfactory’ (n = 37/71; 52.1 %) or a ‘satisfactory’ (n = 18/71; 25.4 %) outcome; 22.5 % of patients were not satisfied. The overall complication rate was 12.7 % (n = 9/71). Two cases required post-operative revision surgery (2.8 %). Radiographical analysis demonstrated a highly significant increase of segmental lordosis from 16.1° to 26.7° (p < 0.0001). A high rate of solid interbody fusion was confirmed in 97.3 % of all cases (n = 36/37).

Conclusion

The current study delineates satisfactory clinical results following ASAF at the lumbosacral junction. Patient safety was demonstrated with acceptable complication and low reoperation rates. Radiological data demonstrated a significant reconstruction of lordosis at the lumbosacral junction. Solid interbody fusion was achieved in 97.3 % of all cases in a highly selected cohort with optimal predisposition for fusion. ASAF may serve to avoid a variety of negative side effects for a considerable number of patients which, otherwise, would have been candidates for posterior instrumented fusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Resnick DK, Choudhri TF, Dailey AT, Groff MW, Khoo L, Matz PG, Mummaneni P, Watters WC 3rd, Wang J, Walters BC, Hadley MN (2005) Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion. J Neurosurg Spine 2:692–699

    Article  PubMed  Google Scholar 

  2. DiPaola CP, Molinari RW (2008) Posterior lumbar interbody fusion. J Am Acad Orthop Surg 16:130–139

    PubMed  Google Scholar 

  3. Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK (2008) Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine 33:2868–2873

    Article  PubMed  Google Scholar 

  4. Gillet P (2003) The fate of the adjacent motion segments after lumbar fusion. J Spinal Disord Tech 16:338–345

    Article  PubMed  Google Scholar 

  5. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res:76-81

  6. Ha KY, Lee JS, Kim KW (2008) Degeneration of sacroiliac joint after instrumented lumbar or lumbosacral fusion: a prospective cohort study over five-year follow-up. Spine 33:1192–1198

    Article  PubMed  Google Scholar 

  7. Katz V, Schofferman J, Reynolds J (2003) The sacroiliac joint: a potential cause of pain after lumbar fusion to the sacrum. J Spinal Disord Tech 16:96–99

    Article  PubMed  Google Scholar 

  8. Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377

    Article  CAS  PubMed  Google Scholar 

  10. Maigne JY, Planchon CA (2005) Sacroiliac joint pain after lumbar fusion. A study with anesthetic blocks. Eur Spine J 14:654–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Moshirfar A, Jenis LG, Spector LR, Burke PJ, Losina E, Katz JN, Rand FF, Tromanhauser SG, Banco RJ (2006) Computed tomography evaluation of superior-segment facet-joint violation after pedicle instrumentation of the lumbar spine with a midline surgical approach. Spine 31:2624–2629

    Article  PubMed  Google Scholar 

  12. Park Y, Ha JW, Lee YT, Sung NY (2011) Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J 11:295–302

    Article  PubMed  Google Scholar 

  13. Shah RR, Mohammed S, Saifuddin A, Taylor BA (2003) Radiologic evaluation of adjacent superior segment facet joint violation following transpedicular instrumentation of the lumbar spine. Spine 28:272–275

    PubMed  Google Scholar 

  14. Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25:1617–1624

    Article  CAS  PubMed  Google Scholar 

  15. Akamaru T, Kawahara N, Tim Yoon S, Minamide A, Su Kim K, Tomita K, Hutton WC (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine 28:1560–1566

    PubMed  Google Scholar 

  16. Lazennec JY, Ramare S, Arafati N, Laudet CG, Gorin M, Roger B, Hansen S, Saillant G, Maurs L, Trabelsi R (2000) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J 9:47–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine (Phila Pa 1976) 32:382–387

    Article  Google Scholar 

  18. Kong CB, Jeon DW, Chang BS, Lee JH, Suk KS, Park JB (2010) Outcome of spinal fusion for lumbar degenerative disease: a cross-sectional study in Korea. Spine (Phila Pa 1976) 35:1489–1494

    Google Scholar 

  19. Howe CR, Agel J, Lee MJ, Bransford RJ, Wagner TA, Bellabarba C, Chapman JR (2011) The morbidity and mortality of fusions from the thoracic spine to the pelvis in the adult population. Spine (Phila Pa 1976) 36:1397–1401

    Article  Google Scholar 

  20. Phillips FM, Cunningham B, Carandang G, Ghanayem AJ, Voronov L, Havey RM, Patwardhan AG (2004) Effect of supplemental translaminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads. Spine (Phila Pa 1976) 29:1731–1736

    Article  Google Scholar 

  21. Tsantrizos A, Andreou A, Aebi M, Steffen T (2000) Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Eur Spine J 9:14–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mirza SK (2005) Point of view: commentary on the research reports that led to Food and Drug Administration approval of an artificial disc. Spine 30:1561–1564

    Article  PubMed  Google Scholar 

  23. Pellise F, Puig O, Rivas A, Bago J, Villanueva C (2002) Low fusion rate after L5-S1 laparoscopic anterior lumbar interbody fusion using twin stand-alone carbon fiber cages. Spine (Phila Pa 1976) 27:1665–1669

    Article  Google Scholar 

  24. Li J, Dumonski ML, Liu Q, Lipman A, Hong J, Yang N, Jin Z, Ren Y, Limthongkul W, Bessey JT, Thalgott J, Gebauer G, Albert TJ, Vaccaro AR (2010) A multicenter study to evaluate the safety and efficacy of a stand-alone anterior carbon I/F Cage for anterior lumbar interbody fusion: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976) 35:E1564–E1570

    Article  Google Scholar 

  25. Schimmel JJ, Poeschmann MS, Horsting PP, Schonfeld DH, van Limbeek J, Pavlov PW (2012) PEEK cages in lumbar fusion: mid-term clinical outcome and radiological fusion. J Spinal Disord Tech

  26. Behrbalk E, Uri O, Parks RM, Musson R, Soh RC, Boszczyk BM (2013) Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J 22:2869–2875

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cho CB, Ryu KS, Park CK (2010) Anterior lumbar interbody fusion with stand-alone interbody cage in treatment of lumbar intervertebral foraminal stenosis : comparative study of two different types of cages. J Korean Neurosurg Soc 47:352–357

    Article  PubMed Central  PubMed  Google Scholar 

  28. Strube P, Hoff E, Hartwig T, Perka CF, Gross C, Putzier M (2012) Stand-alone anterior versus anteroposterior lumbar interbody single-level fusion after a mean follow-up of 41 months. J Spinal Disord Tech 25:362–369

    Article  PubMed  Google Scholar 

  29. Dreyfuss PH, Dreyer SJ (2003) Lumbar zygapophysial (facet) joint injections. Spine J 3:50S–59S

    Article  PubMed  Google Scholar 

  30. Dreyfuss PH, Dreyer SJ, Herring SA (1995) Lumbar zygapophysial (facet) joint injections. Spine 20:2040–2047

    Article  CAS  PubMed  Google Scholar 

  31. Laslett M, McDonald B, Aprill CN, Tropp H, Oberg B (2006) Clinical predictors of screening lumbar zygapophyseal joint blocks: development of clinical prediction rules. Spine J 6:370–379

    Article  PubMed  Google Scholar 

  32. Lippitt AB (1984) The facet joint and its role in spine pain. Management with facet joint injections. Spine 9:746–750

    Article  CAS  PubMed  Google Scholar 

  33. Manchikanti L, Boswell MV (2005) Sacroiliac joint pain after lumbar fusion to the sacrum. J Spinal Disord Tech 18(Suppl):S135

    Article  PubMed  Google Scholar 

  34. Marks RC, Houston T, Thulbourne T (1992) Facet joint injection and facet nerve block: a randomised comparison in 86 patients with chronic low back pain. Pain 49:325–328

    Article  CAS  PubMed  Google Scholar 

  35. Carragee EJ, Tanner CM, Yang B, Brito JL, Truong T (1999) False-positive findings on lumbar discography. Reliability of subjective concordance assessment during provocative disc injection. Spine 24:2542–2547

    Article  CAS  PubMed  Google Scholar 

  36. Carragee EJ, Chen Y, Tanner CM, Hayward C, Rossi M, Hagle C (2000) Can discography cause long-term back symptoms in previously asymptomatic subjects? Spine 25:1803–1808

    Article  CAS  PubMed  Google Scholar 

  37. Block AR, Vanharanta H, Ohnmeiss DD, Guyer RD (1996) Discographic pain report. Influence of psychological factors. Spine 21:334–338

    Article  CAS  PubMed  Google Scholar 

  38. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  PubMed  Google Scholar 

  39. Berlemann U, Gries NC, Moore RJ (1998) The relationship between height, shape and histological changes in early degeneration of the lower lumbar discs. Eur Spine J 7:212–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R (2009) 2009 ISSLS Prize Winner: Does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine (Phila Pa 1976) 34:2338–2345

    Article  Google Scholar 

  41. Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044

    Article  CAS  PubMed  Google Scholar 

  42. Fujiwara A, Tamai K, Yamato M, An HS, Yoshida H, Saotome K, Kurihashi A (1999) The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J 8:396–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hsieh AH, Hwang D, Ryan DA, Freeman AK, Kim H (2009) Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function. Spine 34:998–1005

    Article  PubMed  Google Scholar 

  44. Korecki CL, Costi JJ, Iatridis JC (2008) Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 33:235–241

    Article  PubMed Central  PubMed  Google Scholar 

  45. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  46. Moore RJ, Crotti TN, Osti OL, Fraser RD, Vernon-Roberts B (1999) Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs. Spine 24:519–525

    Article  CAS  PubMed  Google Scholar 

  47. Nassr A, Lee JY, Bashir RS, Rihn JA, Eck JC, Kang JD, Lim MR (2009) Does incorrect level needle localization during anterior cervical discectomy and fusion lead to accelerated disc degeneration? Spine 34:189–192

    Article  PubMed  Google Scholar 

  48. Mayer HM, Wiechert K (2002) Microsurgical anterior approaches to the lumbar spine for interbody fusion and total disc replacement. Neurosurgery 51:S159–S165

    Article  PubMed  Google Scholar 

  49. Mayer HM, Wiechert K, Korge A, Qose I (2002) Minimally invasive total disc replacement: surgical technique and preliminary clinical results. Eur Spine J 11(Suppl 2):S124–S130

    PubMed Central  PubMed  Google Scholar 

  50. Andersson GB, Schultz A, Nathan A, Irstam L (1981) Roentgenographic measurement of lumbar intervertebral disc height. Spine 6:154–158

    Article  CAS  PubMed  Google Scholar 

  51. Luoma K, Vehmas T, Riihimaki H, Raininko R (2001) Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine 26:680–686

    Article  CAS  PubMed  Google Scholar 

  52. Dabbs VM, Dabbs LG (1990) Correlation between disc height narrowing and low-back pain. Spine 15:1366–1369

    Article  CAS  PubMed  Google Scholar 

  53. Harrison DE, Harrison DD, Cailliet R, Janik TJ, Holland B (2001) Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine 26:E235–E242

    Article  CAS  PubMed  Google Scholar 

  54. Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26:2057–2066 (pii 26/8/2057)

    PubMed  Google Scholar 

  55. Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66:271–273

    CAS  PubMed  Google Scholar 

  56. Hill T, Lewicki P (2007) Statistiks: methods and applications. StatSoft Inc., Tulsa

    Google Scholar 

  57. Fritzell P, Hagg O, Wessberg P, Nordwall A (2001) 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine 26:2521–2532 (discussion 2532–2524)

    Article  CAS  PubMed  Google Scholar 

  58. Carreon LY, Glassman SD, Howard J (2008) Fusion and nonsurgical treatment for symptomatic lumbar degenerative disease: a systematic review of Oswestry Disability Index and MOS Short Form-36 outcomes. Spine J 8:747–755

    Article  PubMed  Google Scholar 

  59. Dickerman RD, Reynolds AS, Rashbaum R, Hochschuler S (2008) Adjacent segment degeneration: Time is not as important as facet preservation! Acta Orthop 79:452 author reply 452–453

    Article  PubMed  Google Scholar 

  60. Cizik AM, Lee MJ, Martin BI, Bransford RJ, Bellabarba C, Chapman JR, Mirza SK (2012) Using the spine surgical invasiveness index to identify risk of surgical site infection: a multivariate analysis. J Bone Joint Surg Am 94:335–342

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mirza SK, Deyo RA, Heagerty PJ, Konodi MA, Lee LA, Turner JA, Goodkin R (2008) Development of an index to characterize the “invasiveness” of spine surgery: validation by comparison to blood loss and operative time. Spine (Phila Pa 1976) 33:2651–2661 (discussion 2662)

    Article  Google Scholar 

  62. Malter AD, McNeney B, Loeser JD, Deyo RA (1998) 5-year reoperation rates after different types of lumbar spine surgery. Spine (Phila Pa 1976) 23:814–820

    Article  CAS  Google Scholar 

  63. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine 32:382–387

    Article  PubMed  Google Scholar 

  64. Martin BI, Mirza SK, Comstock BA, Gray DT, Kreuter W, Deyo RA (2007) Are lumbar spine reoperation rates falling with greater use of fusion surgery and new surgical technology? Spine (Phila Pa 1976) 32:2119–2126

    Article  Google Scholar 

  65. Carreon LY, Puno RM, Dimar JR 2nd, Glassman SD, Johnson JR (2003) Perioperative complications of posterior lumbar decompression and arthrodesis in older adults. J Bone Joint Surg Am 85-A:2089–2092

    PubMed  Google Scholar 

  66. Siepe CJ, Korge A, Grochulla F, Mehren C, Mayer HM (2008) Analysis of post-operative pain patterns following total lumbar disc replacement: results from fluoroscopically guided spine infiltrations. Eur Spine J 17:44–56

    Article  PubMed Central  PubMed  Google Scholar 

  67. Siepe CJ, Mayer HM, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement: different results for different levels. Spine 32:782–790

    Article  PubMed  Google Scholar 

  68. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682–688

    Article  PubMed  Google Scholar 

  69. Konig MA, Ebrahimi FV, Nitulescu A, Behrbalk E, Boszczyk BM (2013) Early results of stand-alone anterior lumbar interbody fusion in iatrogenic spondylolisthesis patients. Eur Spine J 22:2876–2883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    Article  PubMed  Google Scholar 

  71. Tokuhashi Y, Ajiro Y, Umezawa N (2008) Follow-up of patients with delayed union after posterior fusion with pedicle screw fixation. Spine (Phila Pa 1976) 33:786–791

    Article  Google Scholar 

  72. Tokuhashi Y, Matsuzaki H, Oda H, Uei H (2008) Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine (Phila Pa 1976) 33:903–908

    Article  Google Scholar 

  73. Kanemura T, Matsumoto A, Ishikawa Y, Yamaguchi H, Satake K, Ito Z, Yoshida G, Sakai Y, Imagama S, Kawakami N (2014) Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages: a prospective five-year study. J Bone Joint Surg Am 96:e82

    Article  PubMed  Google Scholar 

  74. Mroz TE, Wang JC, Hashimoto R, Norvell DC (2010) Complications related to osteobiologics use in spine surgery: a systematic review. Spine (Phila Pa 1976) 35:S86–S104

    Article  Google Scholar 

  75. Tzermiadianos MN, Mekhail A, Voronov LI, Zook J, Havey RM, Renner SM, Carandang G, Abjornson C, Patwardhan AG (2008) Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Spine (Phila Pa 1976) 33:E38–E43

    Article  Google Scholar 

  76. Anjarwalla NK, Morcom RK, Fraser RD (2006) Supplementary stabilization with anterior lumbar intervertebral fusion–a radiologic review. Spine (Phila Pa 1976) 31:1281–1287

    Article  Google Scholar 

  77. Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F (2005) A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine 30:2631–2636

    Article  PubMed  Google Scholar 

  78. Beaubien BP, Freeman AL, Turner JL, Castro CA, Armstrong WD, Waugh LG, Dryer RF (2010) Evaluation of a lumbar intervertebral spacer with integrated screws as a stand-alone fixation device. J Spinal Disord Tech 23:351–358

    Article  PubMed  Google Scholar 

  79. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine (Phila Pa 1976) 31:762–768

    Article  Google Scholar 

  80. Schleicher P, Gerlach R, Schar B, Cain CM, Achatz W, Pflugmacher R, Haas NP, Kandziora F (2008) Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J 17:1757–1765

    Article  PubMed Central  PubMed  Google Scholar 

  81. Flamme CH, Hurschler C, Heymann C, von der Heide N (2005) Comparative biomechanical testing of anterior and posterior stabilization procedures. Spine (Phila Pa 1976) 30:E352–E362

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this study would like to thank Mrs. Pauline Jansen van Rensburg for the proof reading and editing of this article.

Conflict of interest

No direct or indirect fundings have been received in support of this study. Mayer HM and Siepe CJ are consultants of DePuy Synthes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Siepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siepe, C.J., Stosch-Wiechert, K., Heider, F. et al. Anterior stand-alone fusion revisited: a prospective clinical, X-ray and CT investigation. Eur Spine J 24, 838–851 (2015). https://doi.org/10.1007/s00586-014-3642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3642-y

Keywords

Navigation